Require that the expanded LabelsTemplate has values. That is, the
(expanded) template must consist of key=value pairs separated by
newlines. No default value will be assigned and we now return an error
if a (non-empty) line not conforming with the key=value format is
encountered.
Commit c8d73666d described that the value defaults to "true" if not
specified. That was not the case and we defaulted to an empty string,
instead.
An example:
- name: "my rule"
labelsTemplate: |
my.label.1=foo
my.label.2=
Would create these labels:
"my.label.1": "foo"
"my.label.2": ""
Further, the following:
- name: "my failing rule"
labelsTemplate: |
my.label.3
will cause an error in the rule processing.
Support templating of label names in feature rules. It is available both
in NodeFeatureRule CRs and in custom rule configuration of nfd-worker.
This patch adds a new 'labelsTemplate' field to the rule spec, making it
possible to dynamically generate multiple labels per rule based on the
matched features. The feature relies on the golang "text/template"
package. When expanded, the template must contain labels in a raw
<key>[=<value>] format (where 'value' defaults to "true"), separated by
newlines i.e.:
- name: <rule-name>
labelsTemplate: |
<label-1>[=<value-1>]
<label-2>[=<value-2>]
...
All the matched features of 'matchFeatures' directives are available for
templating engine in a nested data structure that can be described in
yaml as:
.
<domain-1>:
<key-feature-1>:
- Name: <matched-key>
- ...
<value-feature-1:
- Name: <matched-key>
Value: <matched-value>
- ...
<instance-feature-1>:
- <attribute-1-name>: <attribute-1-value>
<attribute-2-name>: <attribute-2-value>
...
- ...
<domain-2>:
...
That is, the per-feature data available for matching depends on the type
of feature that was matched:
- "key features": only 'Name' is available
- "value features": 'Name' and 'Value' can be used
- "instance features": all attributes of the matched instance are
available
NOTE: In case of matchAny is specified, the template is executed
separately against each individual matchFeatures matcher and the
eventual set of labels is a superset of all these expansions. Consider
the following:
- name: <name>
labelsTemplate: <template>
matchAny:
- matchFeatures: <matcher#1>
- matchFeatures: <matcher#2>
matchFeatures: <matcher#3>
In the example above (assuming the overall result is a match) the
template would be executed on matcher#1 and/or matcher#2 (depending on
whether both or only one of them match), and finally on matcher#3, and
all the labels from these separate expansions would be created (i.e. the
end result would be a union of all the individual expansions).
NOTE 2: The 'labels' field has priority over 'labelsTemplate', i.e.
labels specified in the 'labels' field will override any labels
originating from the 'labelsTemplate' field.
A special case of an empty match expression set matches everything (i.e.
matches/returns all existing keys/values). This makes it simpler to
write templates that run over all values. Also, makes it possible to
later implement support for templates that run over all _keys_ of a
feature.
Some example configurations:
- name: "my-pci-template-features"
labelsTemplate: |
{{ range .pci.device }}intel-{{ .class }}-{{ .device }}=present
{{ end }}
matchFeatures:
- feature: pci.device
matchExpressions:
class: {op: InRegexp, value: ["^06"]}
vendor: ["8086"]
- name: "my-system-template-features"
labelsTemplate: |
{{ range .system.osrelease }}system-{{ .Name }}={{ .Value }}
{{ end }}
matchFeatures:
- feature: system.osRelease
matchExpressions:
ID: {op: Exists}
VERSION_ID.major: {op: Exists}
Imaginative template pipelines are possible, of course, but care must be
taken in order to produce understandable and maintainable rule sets.
Commit 0945019161 changed the behavior so
that NFD started to advertise also "false" status of selinux.enabled
label. This patch reverts this behavior (i.e. we only have
selinux.enabled=true). The rationale behind is avoiding any excess
labels - selinux.enabled=false label would be pointless noise in most
deployments.
Implement a private helper type (nameTemplateHelper) for handling
(executing and caching) of templated names. DeepCopy methods are
manually implemented as controller-gen is not able to help with that.
Separate feature discovery and creation of feature labels.
Generalize the discovery of nvdimm devices so that they can be matched
in custom label rules in a similar fashion as pci and usb devices.
Available attributes for matching nvdimm devices are limited to:
- devtype
- mode
For numa we now detect the number of numa nodes which can be matched
agains in custom label rules.
Labels created by the memory feature source are unchanged. The new
features being detected are available in custom rules only.
Example custom rule:
- name: "my memory rule"
labels:
my-memory-feature: "true"
matchFeatures:
- feature: memory.numa
matchExpressions:
"node_count": {op: Gt, value: ["3"]}
- feature: memory.nv
matchExpressions:
"devtype" {op: In, value: ["nd_dax"]}
Also, add minimalist unit test.
Separate feature discovery and creation of feature labels. Generalize
the feature discovery so that network devices can be matched in custom
label rules in a similar fashion as pci and usb devices. Available
attributes for matching are:
- operstate
- speed
- sriov_numvfs
- sriov_totalvfs
Labels created by the network feature source are unchanged. The new
features being detected are available in custom rules only.
Example custom rule:
- name: "my network rule"
labels:
my-network-feature: "true"
matchFeatures:
- feature: network.device
matchExpressions:
"operstate": { op: In, value: ["up"] }
"sriov_numvfs": { op: Gt, value: ["9"] }
Also, add minimalist unit test.
Enable Custom Resource based label creation in nfd-master. This extends
the previously implemented controller stub for watching NodeFeatureRule
objects. NFD-master watches NodeFeatureRule objects in the cluster and
processes the rules on every incoming labeling request from workers.
The functionality relies on the "raw features" (identical to how
nfd-worker handles custom rules) submitted by nfd-worker, making it
independent of the label source configuration of the worker. This means
that the labeling functions as expected even if all sources in the
worker are disabled.
NOTE: nfd-master is stateless and re-labeling only happens on the
reception of SetLabelsRequest from the worker – i.e. on intervals
specified by the core.sleepInterval configuration option (or
-sleep-interval cmdline flag) of each nfd-worker instance. This means
that modification/creation of NodeFeatureRule objects does not
automatically update the node labels. Instead, the changes only come
visible when workers send their labeling requests.
Add a new command line flag for disabling/enabling the controller for
NodeFeatureRule objects. In practice, disabling the controller disables
all labels generated from rules in NodeFeatureRule objects.
Implement a simple controller stub that operates on NodeFeatureRule
objects. The controller does not yet have any functionality other than
logging changes in the (NodeFeatureRule) objecs it is watching.
Also update the documentation on the -no-publish flag to match the new
functionality.
Separate feature discovery and creation of feature labels. Generalize
the feature discovery so that block devices can be matched in custom
label rules in a similar fashion as pci and usb devices. This extends
the discovery to other block queue attributes than 'rotational': now we
also detect 'dax', 'nr_zones' and 'zoned'.
Labels created by the storage feature source are unchanged. The new
features being detected are available in custom rules only.
Example custom rules:
- name: "my block rule 1"
labels:
my-block-feature-1: "true"
matchFeatures:
- feature: storage.block
"rotational": {op: In, value: ["0"]}
- name: "my block rule 2"
labels:
my-block-feature-2: "true"
matchFeatures:
- feature: storage.block
"zoned": {op: In, value: [“host-aware”, “host-managed”]}
Also, add minimalist unit test.
Add auto-generated code for interfacing our CRD API. On top of this, a
CR controller can be implemented. This patch uses k8s/code-generator
for code generation. Run "make generate" in order to (re-)generate
everything. Path to the code-generator repository may need to be
specified:
K8S_CODE_GENERATOR=path/to/code-generator make apigen
Code-generator version 0.20.7 was used to create this patch. Install
k8s code-generator tools and clone the repo with:
git clone https://github.com/kubernetes/code-generator -b v0.20.7 <path/to/code-generator>
go install k8s.io/code-generator/cmd/...(at)v0.20.7
Move the rule processing of matchFeatures and matchAny from
source/custom package over to pkg/apis/nfd, aiming for better integrity
and re-usability of the code. Does not change the CRD API as such, just
adds more supportive functions.
Having a dedicated type makes it possible to specify deepcopy functions
for it. We need to do this manually as deepcopy-gen doesn't know how to
create copies of regexps.
Add a cluster-scoped Custom Resource Definition for specifying labeling
rules. Nodes (node features, node objects) are cluster-level objects and
thus the natural and encouraged setup is to only have one NFD deployment
per cluster - the set of underlying features of the node stays the same
independent of how many parallel NFD deployments you have. Our extension
points (hooks, feature files and now CRs) can be be used by multiple
actors (depending on us) simultaneously. Having the CRD cluster-scoped
hopefully drives deployments in this direction. It also should make
deployment of vendor-specific labeling rules easy as there is no need to
worry about the namespace.
This patch virtually replicates the source.custom.FeatureSpec in a CRD
API (located in the pkg/apis/nfd/v1alpha1 package) with the notable
exception that "MatchOn" legacy rules are not supported. Legacy rules
are left out in order to keep the CRD simple and clean.
The duplicate functionality in source/custom will be dropped by upcoming
patches.
This patch utilizes controller-gen (from sigs.k8s.io/controller-tools)
for generating the CRD and deepcopy methods. Code can be (re-)generated
with "make generate". Install controller-gen with:
go install sigs.k8s.io/controller-tools/cmd/controller-gen@v0.7.0
Update kustomize and helm deployments to deploy the CRD.
Create a new package pkg/apis/nfd/v1alpha1 and migrate the custom rule
expressions over there. This is the first step in creating a new CRD API
for custom rules.
Enable transmitting the discovered "raw" features over the gRPC API.
Extend pkg/api/feature with protobuf and gRPC code. In this, utilize
go-to-protobuf from k8s code-generator for auto-generating the gRPC
interface from golang code. The tool can be Installed with:
go install k8s.io/code-generator/cmd/go-to-protobuf@v0.20.7
The auto-generated code is (re-)generated/updated with "make apigen".
The NodeResourceTopology API has been made cluster
scoped as in the current context a CR corresponds to
a Node and since Node is a cluster scoped resource it
makes sense to make NRT cluster scoped as well.
Ref: https://github.com/k8stopologyawareschedwg/noderesourcetopology-api/pull/18
Signed-off-by: Swati Sehgal <swsehgal@redhat.com>