The NodeFeatureGroup is an NFD-specific custom resource that is designed for
grouping nodes based on their features. NFD-Master watches for NodeFeatureGroup
objects in the cluster and updates the status of the NodeFeatureGroup object
with the list of nodes that match the feature group rules. The NodeFeatureGroup
rules follow the same syntax as the NodeFeatureRule rules.
Signed-off-by: Carlos Eduardo Arango Gutierrez <eduardoa@nvidia.com>
This patch separates the gRPC health server from the deprecated gRPC
server (disabled by default, replaced by the NodeFeature CRD API) used
for node labeling requests. The new health server runs on hardcoded TCP
port number 8082.
The main motivation for this change is to make the Kubernetes' built-in
gRPC liveness probes to function if TLS is enabled (as they don't
support TLS).
The health server itself is a naive implementation (as it was before),
basically only checking that nfd-master has started and hasn't crashed.
The patch adds a TODO note to improve the functionality.
Extend the format of feature matcher terms (the elements of the
arrayspecified under under matchFeatures field) with new matchName
field. The value of this field is an expression that is evaluated
against the names of feature elements instead of their values (values
are matched with the matchExpressions field, instead).
The matchName field is useful e.g. in template rules for creating
per-feature-element labels based on feature names (instead of values)
and in non-template rules for checking if (at least) one of certain
feature element names are present.
If both matchExpressions and matchName for certain feature matcher term
is specified, they both must match in order to get an overall match.
Also, in this case the list of matched features (used in templating) is
the union of the results from matchExpressions and matchName.
An example of creating an "avx512" label if any AVX512* CPUID feature is
present:
- name: "avx wildcard rule"
labels:
avx512: "true"
matchFeatures:
- feature: cpu.cpuid
matchName: {op: InRegexp, value: ["^AVX512"]}
An example of a template rule creating a dynamic set of labels based on
the existence of certain kconfig options.
- name: "kconfig template rule"
labelsTemplate: |
{{ range .kernel.config }}kconfig-{{ .Name }}={{ .Value }}
{{ end }}
matchFeatures:
- feature: kernel.config
matchName: {op: In, value: ["SWAP", "X86", "ARM"]}
NOTE: this patch changes the corner case of nil/null match expressions
with instance features (i.e. "matchExpressions: null"). Previously, we
returned all instances for templating but now a nil match expression is
not evaluated and no instances for templating are returned.
Drop the creation helper functions as one step in an effort to tidy up
the api package. These functions were not much used outside unit tests
anyway, the static rules of the nfd-worker custom feature source being
the only exception (and if those happened to be invalid we'd catch that
e.g. in the e2e-tests).
The "combined" overlay, deploying nfd-master and nfd-worker in the same
pod (with a daemonset) doesn't make sense anymore as we have enabled
NodeFeature API. There is no direct communication between nfd-master and
nfd-worker anymore, Moreover, the combined deployment can be seen as
broken as there is one NodeFeature controller (i.e. nfd-master) on each
node, causing them to race against each other, all processing all
NodeFeature objects.
Implements three metrics for nfd-gc:
- nfd_gc_build_info: version information of nfd-gc.
- nfd_gc_objects_deleted_total: total number of NodeFeature and
NodeResourceTopology objects deleted by nfd-gc.
- nfd_gc_object_delete_failures_total: number of errors encountered when
deleting NodeFeature and NodeResourceTopology objects.
Kubernetes 1.23 has introduced native health probes for gRPC which
can replace grpc_health_probe utility. This commit removes baking
in grpc_health_probe binary into the image and updates related
health checks to use k8s native gRPC.
Signed-off-by: Muyassarov, Feruzjon <feruzjon.muyassarov@intel.com>
Rename the old "topology-gc" to just "gc". Simplify the setup a bit by
including the RBAC rules in the "gc" base.
Note: we don't enable nfd-gc in the default overlay, yet, as the
NodeFeature API isn't enabled (gc is not needed).
Expose metrics via prometheus.monitoring.coreos.com/v1
The exposed metrics are
| Metric | Type | Meaning |
| --------------- | ---------------- | ---------------- |
| `nfd_master_build_info` | Gauge | Version from which nfd-master was built. |
| `nfd_worker_build_info` | Gauge | Version from which nfd-worker was built. |
| `nfd_updated_nodes` | Counter | Time taken to label a node |
| `nfd_crd_processing_time` | Gauge | Time taken to process a NodeFeatureRule CRD |
| `nfd_feature_discovery_duration_seconds` | HistogramVec | Time taken to discover features on a node |
Signed-off-by: Carlos Eduardo Arango Gutierrez <eduardoa@nvidia.com>
Co-authored-by: Markus Lehtonen <markus.lehtonen@intel.com>
It allows NFD-master to be run in active-passive way when running
multiple instances of NFD-master to prevent multiple components
from updating same custom resources.
Signed-off-by: PiotrProkop <pprokop@nvidia.com>
Update controller-gen tool from sigs.k8s.io/controller-tools to the
latest release.
Also, bump goimports from golang.org/x/tools to the latest version.
Add support for management of Extended Resources via the
NodeFeatureRule CRD API.
There are usage scenarios where users want to advertise features
as extended resources instead of labels (or annotations).
This patch enables the discovery of extended resources, via annotation
and patch of node.status.capacity and node.status.allocatable. By using
the NodeFeatureRule API.
Co-authored-by: Carlos Eduardo Arango Gutierrez <eduardoa@nvidia.com>
Co-authored-by: Markus Lehtonen <markus.lehtonen@intel.com>
Co-authored-by: Fabiano Fidêncio <fabiano.fidencio@intel.com>
Signed-off-by: Fabiano Fidêncio <fabiano.fidencio@intel.com>
Signed-off-by: Carlos Eduardo Arango Gutierrez <eduardoa@nvidia.com>
Similar to the nfd-worker, in this PR we want to support the
dynamic run-time configurability through a config file for the nfd-master.
We'll use a json or yaml configuration file along with the fsnotify in
order to watch for changes in the config file. As a result, we're
allowing dynamic control of logging params, allowed namespaces,
extended resources, label whitelisting, and denied namespaces.
Signed-off-by: AhmedGrati <ahmedgrati1999@gmail.com>
NodeResourceTopology(aka NRT) custom resource is used to enable NUMA aware Scheduling in Kubernetes.
As of now node-feature-discovery daemons are used to advertise those
resources but there is no service responsible for removing obsolete
objects(without corresponding Kubernetes node).
This patch adds new daemon called nfd-topology-gc which removes old
NRTs.
Signed-off-by: PiotrProkop <pprokop@nvidia.com>
Add initial support for handling NodeFeature objects. With this patch
nfd-master watches NodeFeature objects in all namespaces and reacts to
changes in any of these. The node which a certain NodeFeature object
affects is determined by the "nfd.node.kubernetes.io/node-name"
annotation of the object. When a NodeFeature object targeting certain
node is changed, nfd-master needs to process all other objects targeting
the same node, too, because there may be dependencies between them.
Add a new command line flag for selecting between gRPC and NodeFeature
CRD API as the source of feature requests. Enabling NodeFeature API
disables the gRPC interface.
-enable-nodefeature-api enable NodeFeature CRD API for incoming
feature requests, will disable the gRPC
interface (defaults to false)
It is not possible to serve gRPC and watch NodeFeature objects at the
same time. This is deliberate to avoid labeling races e.g. by nfd-worker
sending gRPC requests but NodeFeature objects in the cluster
"overriding" those changes (labels from the gRPC requests will get
overridden when NodeFeature objects are processed).
Support the new NodeFeatures object of the NFD CRD api. Add two new
command line options to nfd-worker:
-kubeconfig specifies the kubeconfig to use for
connecting k8s api (defaults to empty which
implies in-cluster config)
-enable-nodefeature-api enable the NodeFeature CRD API for
communicating node features to nfd-master,
will also automatically disable gRPC
(defgault to false)
No config file option for selecting the API is available as there should
be no need for dynamically selecting between gRPC and CRD. The
nfd-master configuration must be changed in tandem and it is safer (and
avoid awkward configuration races) to configure the whole NFD deployment
at once.
Default behavior of nfd-worker is not changed i.e. NodeFeatures object
creation is not enabled by default (but must be enabled with the command
line flag).
The patch also updates the kustomize and Helm deployment, adding RBAC
rules for nfd-worker and updating the example worker configuration.
Add a new NodeFeature CRD to the nfd Kubernetes API to communicate node
features over K8s api objects instead of gRPC. The new resource is
namespaced which will help the management of multiple NodeFeature
objects per node. This aims at enabling 3rd party detectors for custom
features.
In addition to communicating raw features the NodeFeature object also
has a field for directly requesting labels that should be applied on the
node object.
Rename the crd deployment file to nfd-api-crds.yaml so that it matches
the new content of the file. Also, rename the Helm subdir for CRDs to
match the expected chart directory structure.
Drop the gRPC communication to nfd-master and connect to the Kubernetes
API server directly when updating NodeResourceTopology objects.
Topology-updater already has connection to the API server for listing
Pods so this is not that dramatic change. It also simplifies the code
a lot as there is no need for the NFD gRPC client and no need for
managing TLS certs/keys.
This change aligns nfd-topology-updater with the future direction of
nfd-worker where the gRPC API is being dropped and replaced by a
CRD-based API.
This patch also update deployment files and documentation to reflect
this change.
Extend NodeFeatureRule Spec with taints field to allow users to
specify the list of the taints they want to be set on the node if
rule matches.
Signed-off-by: Feruzjon Muyassarov <feruzjon.muyassarov@intel.com>
This patch adds a kubebuilder marker to add a short name nfr for
NodeFeatureRule CRD.
Signed-off-by: Feruzjon Muyassarov <feruzjon.muyassarov@intel.com>
Support templating of var names in a similar manner as labels. Add
support for a new 'varsTemplate' field to the feature rule spec which is
treated similarly to the 'labelsTemplate' field. The value of the field
is processed through the golang "text/template" template engine and the
expanded value must contain variables in <key>=<value> format, separated
by newlines i.e.:
- name: <rule-name>
varsTemplate: |
<label-1>=<value-1>
<label-2>=<value-2>
...
Similar rules as for 'labelsTemplate' apply, i.e.
1. In case of matchAny is specified, the template is executed separately
against each individual matchFeatures matcher.
2. 'vars' field has priority over 'varsTemplate'
Support backreferencing of output values from previous rules. Enables
complex rule setups where custom features are further combined together
to form even more sophisticated higher level labels. The labels created
by preceding rules are available as a special 'rule.matched' feature
(for matchFeatures to use).
If referencing rules accross multiple configs/CRDs care must be taken
with the ordering. Processing order of rules in nfd-worker:
1. Static rules
2. Files from /etc/kubernetes/node-feature-discovery/custom.d/
in alphabetical order. Subdirectories are processed by reading their
files in alphabetical order.
3. Custom rules from main nfd-worker.conf
In nfd-master, NodeFeatureRule objects are processed in alphabetical
order (based on their metadata.name).
This patch also adds new 'vars' fields to the rule spec. Like 'labels',
it is a map of key-value pairs but no labels are generated from these.
The values specified in 'vars' are only added for backreferencing into
the 'rules.matched' feature. This may by desired in schemes where the
output of certain rules is only used as intermediate variables for other
rules and no labels out of these are wanted.
An example setup:
- name: "kernel feature"
labels:
kernel-feature:
matchFeatures:
- feature: kernel.version
matchExpressions:
major: {op: Gt, value: ["4"]}
- name: "intermediate var feature"
vars:
nolabel-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AVX512F: {op: Exists}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]}
device: {op: In, value: ["1234", "1235"]}
- name: top-level-feature
matchFeatures:
- feature: rule.matched
matchExpressions:
kernel-feature: "true"
nolabel-feature: "true"