Use the single-dash (i.e. '-option' instead of '--option') format
consistently accross log messages and documentation. This is the format
that was mostly used, already, and shown by command line help of the
binaries, for example.
Support backreferencing of output values from previous rules. Enables
complex rule setups where custom features are further combined together
to form even more sophisticated higher level labels. The labels created
by preceding rules are available as a special 'rule.matched' feature
(for matchFeatures to use).
If referencing rules accross multiple configs/CRDs care must be taken
with the ordering. Processing order of rules in nfd-worker:
1. Static rules
2. Files from /etc/kubernetes/node-feature-discovery/custom.d/
in alphabetical order. Subdirectories are processed by reading their
files in alphabetical order.
3. Custom rules from main nfd-worker.conf
In nfd-master, NodeFeatureRule objects are processed in alphabetical
order (based on their metadata.name).
This patch also adds new 'vars' fields to the rule spec. Like 'labels',
it is a map of key-value pairs but no labels are generated from these.
The values specified in 'vars' are only added for backreferencing into
the 'rules.matched' feature. This may by desired in schemes where the
output of certain rules is only used as intermediate variables for other
rules and no labels out of these are wanted.
An example setup:
- name: "kernel feature"
labels:
kernel-feature:
matchFeatures:
- feature: kernel.version
matchExpressions:
major: {op: Gt, value: ["4"]}
- name: "intermediate var feature"
vars:
nolabel-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AVX512F: {op: Exists}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]}
device: {op: In, value: ["1234", "1235"]}
- name: top-level-feature
matchFeatures:
- feature: rule.matched
matchExpressions:
kernel-feature: "true"
nolabel-feature: "true"
Enable Custom Resource based label creation in nfd-master. This extends
the previously implemented controller stub for watching NodeFeatureRule
objects. NFD-master watches NodeFeatureRule objects in the cluster and
processes the rules on every incoming labeling request from workers.
The functionality relies on the "raw features" (identical to how
nfd-worker handles custom rules) submitted by nfd-worker, making it
independent of the label source configuration of the worker. This means
that the labeling functions as expected even if all sources in the
worker are disabled.
NOTE: nfd-master is stateless and re-labeling only happens on the
reception of SetLabelsRequest from the worker – i.e. on intervals
specified by the core.sleepInterval configuration option (or
-sleep-interval cmdline flag) of each nfd-worker instance. This means
that modification/creation of NodeFeatureRule objects does not
automatically update the node labels. Instead, the changes only come
visible when workers send their labeling requests.
Add a new command line flag for disabling/enabling the controller for
NodeFeatureRule objects. In practice, disabling the controller disables
all labels generated from rules in NodeFeatureRule objects.
Implement a simple controller stub that operates on NodeFeatureRule
objects. The controller does not yet have any functionality other than
logging changes in the (NodeFeatureRule) objecs it is watching.
Also update the documentation on the -no-publish flag to match the new
functionality.
The NodeResourceTopology API has been made cluster
scoped as in the current context a CR corresponds to
a Node and since Node is a cluster scoped resource it
makes sense to make NRT cluster scoped as well.
Ref: https://github.com/k8stopologyawareschedwg/noderesourcetopology-api/pull/18
Signed-off-by: Swati Sehgal <swsehgal@redhat.com>
There have been recent changes made to the noderesourcetopology API
storing the proto file generated using go-to-protobuf tool and
this code inports the proto generated in the API in the topology-updater.proto
The PRs corresponding to the changes are as follows:
https://github.com/k8stopologyawareschedwg/noderesourcetopology-api/pull/9https://github.com/k8stopologyawareschedwg/noderesourcetopology-api/pull/13
Commands used to generate topology-updater.pb.go file:
go install github.com/golang/protobuf/protoc-gen-go@v1.4.3
go mod vendor
protoc --go_opt=paths=source_relative --go_out=plugins=grpc:. pkg/topologyupdater/topology-updater.proto -I. -Ivendor
As part of implmentation of this patch, reserved (non-allocatable) CPUs
are evaluated by performing a difference between all the CPUs on a system
(determined by using ghw) and allocatable CPUs (determined by querying
GetAllocatableResources podResource API endpoint).
When aggregator creates the NUMA zones, it will skip the zone creation if
there are no allocatable resources. In this update we creates those missing
zone with zero allocatable/available resources so we won't have holes in the
array of reported zones.
Co-Authored-by: Talor Itzhak <titzhak@redhat.com>
Signed-off-by: Swati Sehgal <swsehgal@redhat.com>
- This patch allows to expose Resource Hardware Topology information
through CRDs in Node Feature Discovery.
- In order to do this we introduce another software component called
nfd-topology-updater in addition to the already existing software
components nfd-master and nfd-worker.
- nfd-master was enhanced to communicate with nfd-topology-updater
over gRPC followed by creation of CRs corresponding to the nodes
in the cluster exposing resource hardware topology information
of that node.
- Pin kubernetes dependency to one that include pod resource implementation
- This code is responsible for obtaining hardware information from the system
as well as pod resource information from the Pod Resource API in order to
determine the allocatable resource information for each NUMA zone. This
information along with Costs for NUMA zones (obtained by reading NUMA distances)
is gathered by nfd-topology-updater running on all the nodes
of the cluster and propagate NUMA zone costs to master in order to populate
that information in the CRs corresponding to the nodes.
- We use GHW facilities for obtaining system information like CPUs, topology,
NUMA distances etc.
- This also includes updates made to Makefile and Dockerfile and Manifests for
deploying nfd-topology-updater.
- This patch includes unit tests
- As part of the Topology Aware Scheduling work, this patch captures
the configured Topology manager scope in addition to the Topology manager policy.
Based on the value of both attribues a single string will be populated to the CRD.
The string value will be on of the following {SingleNUMANodeContainerLevel,
SingleNUMANodePodLevel, BestEffort, Restricted, None}
Co-Authored-by: Artyom Lukianov <alukiano@redhat.com>
Co-Authored-by: Francesco Romani <fromani@redhat.com>
Co-Authored-by: Talor Itzhak <titzhak@redhat.com>
Signed-off-by: Swati Sehgal <swsehgal@redhat.com>
Add a separate label namespace for profile labels, intended for
user-specified higher level "meta features". Also sub-namespaces of this
(i.e. <sub-ns>.profile.node.kubernetes.io) are allowed.
Allow <sub-ns>.feature.node.kubernetes.io label namespaces. Makes it
possible to have e.g. vendor specific label ns without the need to user
-extra-label-ns.
This can be used to help running multiple parallel NFD deployments in
the same cluster. The flag changes the node annotation namespace to
<instance>.nfd.node.kubernetes.io allowing different nfd-master intances
to store metadata in separate annotations.
Handle both creation and parsing of the "feature-labels" and
"extended-resources" annotations in the function. I think this is more
logical to keep them together.
When updating node labels and annotations use JSON patches instead of
doing a read-modify-write on the whole node object. Patching is already
being used in managing extended resources so some of the existing code
was re-usable.
This patch should mitigate the problem of node update failures caused by
race conditions (a change in the node object between our read and write)
resulting e.g. in errors/restarts in nfd worker pods.
For historical reasons the labels in the default nfd namespace have been
internally represented without the namespace part. I.e. instead of
"feature.node.kubernetes.io/foo" we just use "foo". NFD worker uses this
representation, too, both internally and over the gRPC requests. The
same scheme has been used for annotations.
This patch changes NFD master to use fully namespaced label and
annotation names internally. This hopefully makes the code a bit more
understandable. It also addresses some corner cases making the handling
of label names consistent, making it possible to use both "truncated"
and fully namespaced names over the gRPC interface (and in the
annotations).
A new sub-command like flag for cleaning up a cluster. When --prune is
specified nfd-master removes all NFD related labels, annotations and
extended resources from all nodes of the cluster and exits.
This should help undeployment of NFD and be useful for development.
This adds support for making selected labels extended resources.
Labels which have integer values, can be promoted to Kubernetes extended
resources by listing them to the added command line flag
`--resource-labels`. These labels won't then show in the node label
section, they will appear only as extended resources.
Signed-off-by: Ukri Niemimuukko <ukri.niemimuukko@intel.com>
Also, adds new method WaitForReady() into NfdMaster.
In practice, this quite widely tests nfd-master, too, as the tests
create an instance of NfdMaster and verify that the communication
between master and worker works.
Move most of the code under cmd/nfd-master and cmd/nfd-worker into new
packages pkg/nfd-master and pk/nfd-worker, respectively. Makes extending
unit tests to "main" functions easier.