Create a new package pkg/apis/nfd/v1alpha1 and migrate the custom rule
expressions over there. This is the first step in creating a new CRD API
for custom rules.
Implement a framework for more flexible rule configuration and matching,
mimicking the MatchExpressions pattern from K8s nodeselector.
The basic building block is MatchExpression which contains an operator
and a list of values. The operator specifies that "function" that is
applied when evaluating a given input agains the list of values.
Available operators are:
- MatchIn
- MatchNotIn
- MatchInRegexp
- MatchExists
- MatchDoesNotExist
- MatchGt
- MatchLt
- MatchIsTrue
- MatchIsFalse
Another building block of the framework is MatchExpressionSet which is a
map of string-MatchExpression pairs. It is a helper for specifying
multiple expressions that can be matched against a set of set of
features.
This patch converts all existing custom rules to utilize the new
expression-based framework.
Separate feature discovery and creation of feature labels in the usb
source.
Move usb_utils from source/internal to the source/usb package. Change
the implementation of the UsbID custom rule to utilize the FeatureSource
interface of the usb source.
Also, add minimalist unit test.
In my homelab, I have different FTDI serial converters connected to
several utility meters. They all have identical vendor/device, but
different serials.
In order to detect a specific FTDI unit (eg. the one connected to my
electricity meter), I'd like feature labels triggered by a specific USB
serial.
Signed-off-by: Jorik Jonker <jorik@kippendief.biz>
This builds on the PCI support to enable the discovery of USB devices.
This is primarily intended to be used for the discovery of Edge-based
heterogeneous accelerators that are connected via USB, such as the Coral
USB Accelerator and the Intel NCS2 - our main motivation for adding this
capability to NFD, and as part of our work in the SODALITE H2020
project.
USB devices may define their base class at either the device or
interface levels. In the case where no device class is set, the
per-device interfaces are enumerated instead. USB devices may
furthermore have multiple interfaces, which may or may not use the
identical class across each interface. We therefore report device
existence for each unique class definition to enable more fine-grained
labelling and node selection.
The default labelling format includes the class, vendor and device
(product) IDs, as follows:
feature.node.kubernetes.io/usb-fe_1a6e_089a.present=true
As with PCI, a subset of device classes are whitelisted for matching.
By default, there are only a subset of device classes under which
accelerators tend to be mapped, which is used as the basis for
the whitelist. These are:
- Video
- Miscellaneous
- Application Specific
- Vendor Specific
For those interested in matching other classes, this may be extended
by using the UsbId rule provided through the custom source. A full
list of class codes is provided by the USB-IF at:
https://www.usb.org/defined-class-codes
For the moment, owing to a lack of a demonstrable use case, neither
the subclass nor the protocol information are exposed. If this
becomes necessary, support for these attributes can be trivially
added.
Signed-off-by: Paul Mundt <paul.mundt@adaptant.io>