NodeResourceTopology(aka NRT) custom resource is used to enable NUMA aware Scheduling in Kubernetes.
As of now node-feature-discovery daemons are used to advertise those
resources but there is no service responsible for removing obsolete
objects(without corresponding Kubernetes node).
This patch adds new daemon called nfd-topology-gc which removes old
NRTs.
Signed-off-by: PiotrProkop <pprokop@nvidia.com>
Don't require features to be specified. The creator possibly only wants
to create labels or only some types of features. No need to specify
empty structs for the unused fields.
Correctly handle the case where no NodeFeature objects exist for certain
node (and NodeFeature API has been enabled with
-enable-nodefeature-api). In this case all the labels should be removed.
We want to always update all nodes at startup. Without this patch we
don't get any update event from the controller if no NodeFeature or
NodeFeatureRule objects exist in the cluster. Thus all nodes would stay
untouched whereas we really want to remove all labels from all nodes in
this case.
Implement a naive ratelimiter for node update events originating from
the nfd API. We might get a ton of events in short interval. The
simplest example is startup when we get a separate Add event for every
NodeFeature and NodeFeatureRule object. Without rate limiting we
run "update all nodes" separately for each NodeFeatureRule object, plus,
we would run "update node X" separately for each NodeFeature object
targeting node X. This is a huge amount of wasted work because in
principle just running "update all nodes" once should be enough.
Implement handling of multiple NodeFeature objects by merging all
objects (targeting a certain node) into one before processing the data.
This patch implements MergeInto() methods for all required data types.
With support for multiple NodeFeature objects per node, The "nfd api
workflow" can be easily demonstrated and tested from the command line.
Creating the folloiwing object (assuming node-n exists in the cluster):
apiVersion: nfd.k8s-sigs.io/v1alpha1
kind: NodeFeature
metadata:
labels:
nfd.node.kubernetes.io/node-name: node-n
name: my-features-for-node-n
spec:
# Features for NodeFeatureRule matching
features:
flags:
vendor.domain-a:
elements:
feature-x: {}
attributes:
vendor.domain-b:
elements:
feature-y: "foo"
feature-z: "123"
instances:
vendor.domain-c:
elements:
- attributes:
name: "elem-1"
vendor: "acme"
- attributes:
name: "elem-2"
vendor: "acme"
# Labels to be created
labels:
vendor-feature.enabled: "true"
vendor-setting.value: "100"
will create two feature labes:
feature.node.kubernetes.io/vendor-feature.enabled: "true"
feature.node.kubernetes.io/vendor-setting.value: "100"
In addition it will advertise hidden/raw features that can be used for
custom rules in NodeFeatureRule objects. Now, creating a NodeFeatureRule
object:
apiVersion: nfd.k8s-sigs.io/v1alpha1
kind: NodeFeatureRule
metadata:
name: my-rule
spec:
rules:
- name: "my feature rule"
labels:
"my-feature": "true"
matchFeatures:
- feature: vendor.domain-a
matchExpressions:
feature-x: {op: Exists}
- feature: vendor.domain-c
matchExpressions:
vendor: {op: In, value: ["acme"]}
will match the features in the NodeFeature object above and cause one
more label to be created:
feature.node.kubernetes.io/my-feature: "true"
Deprecate the '-featurerules-controller' command line flag as the name
does not describe the functionality anymore: in practice it controls the
CRD controller handling both NodeFeature and NodeFeatureRule objects.
The patch introduces a duplicate, more generally named, flag
'-crd-controller'. A warning is printed in the log if
'-featurerules-controller' flag is encountered.
Add initial support for handling NodeFeature objects. With this patch
nfd-master watches NodeFeature objects in all namespaces and reacts to
changes in any of these. The node which a certain NodeFeature object
affects is determined by the "nfd.node.kubernetes.io/node-name"
annotation of the object. When a NodeFeature object targeting certain
node is changed, nfd-master needs to process all other objects targeting
the same node, too, because there may be dependencies between them.
Add a new command line flag for selecting between gRPC and NodeFeature
CRD API as the source of feature requests. Enabling NodeFeature API
disables the gRPC interface.
-enable-nodefeature-api enable NodeFeature CRD API for incoming
feature requests, will disable the gRPC
interface (defaults to false)
It is not possible to serve gRPC and watch NodeFeature objects at the
same time. This is deliberate to avoid labeling races e.g. by nfd-worker
sending gRPC requests but NodeFeature objects in the cluster
"overriding" those changes (labels from the gRPC requests will get
overridden when NodeFeature objects are processed).
Support the new NodeFeatures object of the NFD CRD api. Add two new
command line options to nfd-worker:
-kubeconfig specifies the kubeconfig to use for
connecting k8s api (defaults to empty which
implies in-cluster config)
-enable-nodefeature-api enable the NodeFeature CRD API for
communicating node features to nfd-master,
will also automatically disable gRPC
(defgault to false)
No config file option for selecting the API is available as there should
be no need for dynamically selecting between gRPC and CRD. The
nfd-master configuration must be changed in tandem and it is safer (and
avoid awkward configuration races) to configure the whole NFD deployment
at once.
Default behavior of nfd-worker is not changed i.e. NodeFeatures object
creation is not enabled by default (but must be enabled with the command
line flag).
The patch also updates the kustomize and Helm deployment, adding RBAC
rules for nfd-worker and updating the example worker configuration.
Add a new NodeFeature CRD to the nfd Kubernetes API to communicate node
features over K8s api objects instead of gRPC. The new resource is
namespaced which will help the management of multiple NodeFeature
objects per node. This aims at enabling 3rd party detectors for custom
features.
In addition to communicating raw features the NodeFeature object also
has a field for directly requesting labels that should be applied on the
node object.
Rename the crd deployment file to nfd-api-crds.yaml so that it matches
the new content of the file. Also, rename the Helm subdir for CRDs to
match the expected chart directory structure.
Drop the gRPC communication to nfd-master and connect to the Kubernetes
API server directly when updating NodeResourceTopology objects.
Topology-updater already has connection to the API server for listing
Pods so this is not that dramatic change. It also simplifies the code
a lot as there is no need for the NFD gRPC client and no need for
managing TLS certs/keys.
This change aligns nfd-topology-updater with the future direction of
nfd-worker where the gRPC API is being dropped and replaced by a
CRD-based API.
This patch also update deployment files and documentation to reflect
this change.
Implement detection of kubernetes namespace by reading file
/var/run/secrets/kubernetes.io/serviceaccount/namespace
Aa a fallback (if the file is not accessible) we take namespace from
KUBERNETES_NAMESPACE environment variable. This is useful for e.g.
testing and development where you might run nfd-worker directly from the
command line on a host system.
This commits extends NFD master code to support adding node taints
from NodeFeatureRule CR. We also introduce a new annotation for
taints which helps to identify if the taint set on node is owned
by NFD or not. When user deletes the taint entry from
NodeFeatureRule CR, NFD will remove the taint from the node. But
to avoid accidental deletion of taints not owned by the NFD, it
needs to know the owner. Keeping track of NFD set taints in the
annotation can be used during the filtering of the owner. Also
enable-taints flag is added to allow users opt in/out for node
tainting feature. The flag takes precedence over taints defined
in NodeFeatureRule CR. In other words, if enbale-taints is set to
false(disabled) and user still defines taints on the CR, NFD will
ignore those taints and skip them from setting on the node.
Signed-off-by: Feruzjon Muyassarov <feruzjon.muyassarov@intel.com>
Extend NodeFeatureRule Spec with taints field to allow users to
specify the list of the taints they want to be set on the node if
rule matches.
Signed-off-by: Feruzjon Muyassarov <feruzjon.muyassarov@intel.com>
Drop the following flags that were deprecated already in v0.8.0:
-sleep-interval (replaced by core.sleepInterval config file option)
-label-whitelist (replaced by core.labelWhiteList config file option)
-sources (replaced by -label-sources flag)
The exclude-list allows to filter specific resource accounting
from NRT's objects per node basis.
The CRs created by the topology-updater are used by the scheduler-plugin
as a source of truth for making scheduling decisions.
As such, this feature allows to hide specific information
from the scheduler, which in turn
will affect the scheduling decision.
A common use case is when user would like to perform scheduling
decisions which are based on a specific resource.
In that case, we can exclude all the other resources
which we don't want the scheduler to exemine.
The exclude-list is provided to the topology-updater via a ConfigMap.
Resource type's names specified in the list should match the names
as shown here: https://pkg.go.dev/k8s.io/api/core/v1#ResourceName
This is a resurrection of an old work started here:
https://github.com/kubernetes-sigs/node-feature-discovery/pull/545
Signed-off-by: Talor Itzhak <titzhak@redhat.com>
Fix handling of templates that got broken in
b907d07d7e when "flattening" the internal
data structure of features. That happened because the golang
text/template format uses dots to reference fields of a struct /
elements of a map (i.e. 'foo.bar' means that 'bar' must be a sub-element
of foo). Thus, using dots in our feature names (e.g. 'cpu.cpuid') means
that that hierarchy must be reflected in the data structure that is fed
to the templating engine. Thus, for templates we're now stuck stuck with
two level hierarchy. It doesn't really matter for now as all our
features follow that naming patter. We might be able to overcome this
limitation e.g. by using reflect but that's left as a future exercise.
Scanning podresources can temporarily fail; the previous code was
mistakenly not rearming the loop condition when this occurred,
effectively stopping the monitoring.
Rather, we should always pool and bail out on unrecoverable
error or when asked to stop.
Signed-off-by: Francesco Romani <fromani@redhat.com>
Flatten the data structure that stores features, dropping the "domain"
level from the data model. That extra level of hierarchy brought little
benefit but just caused some extra complexity, instead. The new
structure nicely matches what we have in the NodeFeatureRule object (the
matchFeatures field of uses the same flat structure with the "feature"
field having a value <domain>.<feature>, e.g. "kernel.version").
This is pre-work for introducing a new "node feature" CRD that contains
the raw feature data. It makes the life of both users and developers
easier when both CRDs, plus our internal code, handle feature data in a
similar flat structure.