Stop converting "=y" and "=m" to "true" for the raw feature values used
in "kernel.config" custom rule processing.
In practice, this means that to check if a kernel config flag has been
set to "y" or "m", one needs to explicitly check for both of the values:
matchFeatures:
- feature: kernel.config
matchExpressions:
FOO: {op: In, value: ["y", "m"]}
instead of (how it used to be):
matchFeatures:
- feature: kernel.config
matchExpressions:
FOO: {op: IsTrue}
The legacy kconfig custom rule is unchanged as are the
kernel-config.<flag> feature labels.
Create a new package pkg/apis/nfd/v1alpha1 and migrate the custom rule
expressions over there. This is the first step in creating a new CRD API
for custom rules.
Implement a framework for more flexible rule configuration and matching,
mimicking the MatchExpressions pattern from K8s nodeselector.
The basic building block is MatchExpression which contains an operator
and a list of values. The operator specifies that "function" that is
applied when evaluating a given input agains the list of values.
Available operators are:
- MatchIn
- MatchNotIn
- MatchInRegexp
- MatchExists
- MatchDoesNotExist
- MatchGt
- MatchLt
- MatchIsTrue
- MatchIsFalse
Another building block of the framework is MatchExpressionSet which is a
map of string-MatchExpression pairs. It is a helper for specifying
multiple expressions that can be matched against a set of set of
features.
This patch converts all existing custom rules to utilize the new
expression-based framework.
Separate feature discovery and creation of feature labels in the system
source.
Also, change the implementation of the nodeName custom rule to utilize
the FeatureSource interface of the system source.
Also, add minimalist unit test.
Move the functionality responsible for detection of loeaded kernel
modules from source/custom over to the source/kernel package. Add a new
"loadedmodule" raw feature to the kernel source to store this
information.
Change loadedKmod custom rule to utilize kernel source.
Separate feature discovery and creation of feature labels in the usb
source.
Move usb_utils from source/internal to the source/usb package. Change
the implementation of the UsbID custom rule to utilize the FeatureSource
interface of the usb source.
Also, add minimalist unit test.
Separate feature discovery and creation of feature labels in the pci
source.
Move pci_utils from source/internal to the source/pci package. Change
the implementation of the PciID custom rule to utilize the FeatureSource
interface of the pci source.
Also, add minimalist unit test.
Convert the cpu source to do feature discovery and creation of feature
labels separately.
Move cpuidutils from source/internal to the source/cpu package. Change
the cpuid custom rule to utilize GetFeatures of the cpu source.
Also, add minimalist unit test.
Separate feature discovery and creation of feature labels in the kernel
source.
Move kernelutils from source/internal back to the source/kernel package.
Change the kconfig custom rule to rely on the FeatureSource interface
(GetFeatures()) of the kernel source.
Also, add minimalist unit test.
In my homelab, I have different FTDI serial converters connected to
several utility meters. They all have identical vendor/device, but
different serials.
In order to detect a specific FTDI unit (eg. the one connected to my
electricity meter), I'd like feature labels triggered by a specific USB
serial.
Signed-off-by: Jorik Jonker <jorik@kippendief.biz>
There are cases when the only available metadata for discovering
features is the node's name. The "nodename" rule extends the custom
source and matches when the node's name matches one of the given
nodename regexp patterns.
It is also possible now to set an optional "value" on custom rules,
which overrides the default "true" label value in case the rule matches.
In order to allow more dynamic configurations without having to modify
the complete worker configuration, custom rules are additionally read
from a "custom.d" directory now. Typically that directory will be filled
by mounting one or more ConfigMaps.
Signed-off-by: Marc Sluiter <msluiter@redhat.com>
This builds on the PCI support to enable the discovery of USB devices.
This is primarily intended to be used for the discovery of Edge-based
heterogeneous accelerators that are connected via USB, such as the Coral
USB Accelerator and the Intel NCS2 - our main motivation for adding this
capability to NFD, and as part of our work in the SODALITE H2020
project.
USB devices may define their base class at either the device or
interface levels. In the case where no device class is set, the
per-device interfaces are enumerated instead. USB devices may
furthermore have multiple interfaces, which may or may not use the
identical class across each interface. We therefore report device
existence for each unique class definition to enable more fine-grained
labelling and node selection.
The default labelling format includes the class, vendor and device
(product) IDs, as follows:
feature.node.kubernetes.io/usb-fe_1a6e_089a.present=true
As with PCI, a subset of device classes are whitelisted for matching.
By default, there are only a subset of device classes under which
accelerators tend to be mapped, which is used as the basis for
the whitelist. These are:
- Video
- Miscellaneous
- Application Specific
- Vendor Specific
For those interested in matching other classes, this may be extended
by using the UsbId rule provided through the custom source. A full
list of class codes is provided by the USB-IF at:
https://www.usb.org/defined-class-codes
For the moment, owing to a lack of a demonstrable use case, neither
the subclass nor the protocol information are exposed. If this
becomes necessary, support for these attributes can be trivially
added.
Signed-off-by: Paul Mundt <paul.mundt@adaptant.io>
- Implement the 'custom' feature source utilizing the
match rules implemented in previous commit.
- Add a static custom feature list for:
1. rdma.capable - marks a node where devices that support
RDMA are present.
2. rdma.enabled - marks a node where rdma modules have
been loaded.
A user may extend these features with additional match rules via
NFD configuration file.
- Add a Rule interface to help describe the contract
between a match rule and the Custom source that uses it.
- Add PciIdRule - a rule that matches on the PCI attributes:
class, vendor, device. Each is provided as a list of elements(strings).
Match operation: OR will be performed per element and AND will be
performed per attribute.
An empty attribute will not be included in the matching process.
Example:
{
"class": ["0200"]
"vendor": ["15b3"]
"device": ["1014", "1016"]
}
- Add LoadedKmodRule - a rule that matches a list of kernel
modules with the kernel modules currently loaded in the node.
Example:
{
["rdma_cm", "ib_core"]
}