source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
/*
|
|
|
|
Copyright 2021 The Kubernetes Authors.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License.
|
|
|
|
*/
|
|
|
|
|
2021-06-07 12:03:21 +03:00
|
|
|
package v1alpha1
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
|
|
|
|
import (
|
|
|
|
"testing"
|
|
|
|
|
|
|
|
"github.com/stretchr/testify/assert"
|
|
|
|
"sigs.k8s.io/node-feature-discovery/pkg/api/feature"
|
|
|
|
)
|
|
|
|
|
|
|
|
func TestRule(t *testing.T) {
|
|
|
|
f := map[string]*feature.DomainFeatures{}
|
|
|
|
r1 := Rule{Labels: map[string]string{"label-1": "", "label-2": "true"}}
|
|
|
|
r2 := Rule{
|
|
|
|
Labels: map[string]string{"label-1": "label-val-1"},
|
|
|
|
MatchFeatures: FeatureMatcher{
|
|
|
|
FeatureMatcherTerm{
|
2021-05-12 13:56:24 +03:00
|
|
|
Feature: "domain-1.kf-1",
|
2021-06-07 12:03:21 +03:00
|
|
|
MatchExpressions: MatchExpressionSet{
|
|
|
|
Expressions: Expressions{"key-1": MustCreateMatchExpression(MatchExists)},
|
2021-05-12 13:56:24 +03:00
|
|
|
},
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
},
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test totally empty features
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err := r1.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r1.Labels, m, "empty matcher should have matched empty features")
|
|
|
|
|
2021-06-07 12:03:21 +03:00
|
|
|
_, err = r2.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Error(t, err, "matching agains a missing domain should have returned an error")
|
|
|
|
|
|
|
|
// Test empty domain
|
|
|
|
d := feature.NewDomainFeatures()
|
|
|
|
f["domain-1"] = d
|
|
|
|
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r1.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r1.Labels, m, "empty matcher should have matched empty features")
|
|
|
|
|
2021-06-07 12:03:21 +03:00
|
|
|
_, err = r2.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Error(t, err, "matching agains a missing feature type should have returned an error")
|
|
|
|
|
|
|
|
// Test empty feature sets
|
|
|
|
d.Keys["kf-1"] = feature.NewKeyFeatures()
|
|
|
|
d.Values["vf-1"] = feature.NewValueFeatures(nil)
|
|
|
|
d.Instances["if-1"] = feature.NewInstanceFeatures(nil)
|
|
|
|
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r1.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r1.Labels, m, "empty matcher should have matched empty features")
|
|
|
|
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r2.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Nil(t, m, "unexpected match")
|
|
|
|
|
|
|
|
// Test non-empty feature sets
|
|
|
|
d.Keys["kf-1"].Elements["key-x"] = feature.Nil{}
|
|
|
|
d.Values["vf-1"].Elements["key-1"] = "val-x"
|
|
|
|
d.Instances["if-1"] = feature.NewInstanceFeatures([]feature.InstanceFeature{
|
|
|
|
*feature.NewInstanceFeature(map[string]string{"attr-1": "val-x"})})
|
|
|
|
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r1.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r1.Labels, m, "empty matcher should have matched empty features")
|
|
|
|
|
|
|
|
// Match "key" features
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r2.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Nil(t, m, "keys should not have matched")
|
|
|
|
|
|
|
|
d.Keys["kf-1"].Elements["key-1"] = feature.Nil{}
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r2.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r2.Labels, m, "keys should have matched")
|
|
|
|
|
|
|
|
// Match "value" features
|
|
|
|
r3 := Rule{
|
|
|
|
Labels: map[string]string{"label-3": "label-val-3", "empty": ""},
|
|
|
|
MatchFeatures: FeatureMatcher{
|
|
|
|
FeatureMatcherTerm{
|
2021-05-12 13:56:24 +03:00
|
|
|
Feature: "domain-1.vf-1",
|
2021-06-07 12:03:21 +03:00
|
|
|
MatchExpressions: MatchExpressionSet{
|
|
|
|
Expressions: Expressions{"key-1": MustCreateMatchExpression(MatchIn, "val-1")},
|
2021-05-12 13:56:24 +03:00
|
|
|
},
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
},
|
|
|
|
},
|
|
|
|
}
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r3.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Nil(t, m, "values should not have matched")
|
|
|
|
|
|
|
|
d.Values["vf-1"].Elements["key-1"] = "val-1"
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r3.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r3.Labels, m, "values should have matched")
|
|
|
|
|
|
|
|
// Match "instance" features
|
|
|
|
r4 := Rule{
|
|
|
|
Labels: map[string]string{"label-4": "label-val-4"},
|
|
|
|
MatchFeatures: FeatureMatcher{
|
|
|
|
FeatureMatcherTerm{
|
2021-05-12 13:56:24 +03:00
|
|
|
Feature: "domain-1.if-1",
|
2021-06-07 12:03:21 +03:00
|
|
|
MatchExpressions: MatchExpressionSet{
|
|
|
|
Expressions: Expressions{"attr-1": MustCreateMatchExpression(MatchIn, "val-1")},
|
2021-05-12 13:56:24 +03:00
|
|
|
},
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
},
|
|
|
|
},
|
|
|
|
}
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r4.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Nil(t, m, "instances should not have matched")
|
|
|
|
|
|
|
|
d.Instances["if-1"].Elements[0].Attributes["attr-1"] = "val-1"
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r4.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r4.Labels, m, "instances should have matched")
|
|
|
|
|
|
|
|
// Test multiple feature matchers
|
|
|
|
r5 := Rule{
|
|
|
|
Labels: map[string]string{"label-5": "label-val-5"},
|
|
|
|
MatchFeatures: FeatureMatcher{
|
|
|
|
FeatureMatcherTerm{
|
2021-05-12 13:56:24 +03:00
|
|
|
Feature: "domain-1.vf-1",
|
2021-06-07 12:03:21 +03:00
|
|
|
MatchExpressions: MatchExpressionSet{
|
|
|
|
Expressions: Expressions{"key-1": MustCreateMatchExpression(MatchIn, "val-x")},
|
2021-05-12 13:56:24 +03:00
|
|
|
},
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
},
|
|
|
|
FeatureMatcherTerm{
|
2021-05-12 13:56:24 +03:00
|
|
|
Feature: "domain-1.if-1",
|
2021-06-07 12:03:21 +03:00
|
|
|
MatchExpressions: MatchExpressionSet{
|
|
|
|
Expressions: Expressions{"attr-1": MustCreateMatchExpression(MatchIn, "val-1")},
|
2021-05-12 13:56:24 +03:00
|
|
|
},
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
},
|
|
|
|
},
|
|
|
|
}
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r5.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Nil(t, m, "instances should not have matched")
|
|
|
|
|
2021-06-07 12:03:21 +03:00
|
|
|
r5.MatchFeatures[0].MatchExpressions.Expressions["key-1"] = MustCreateMatchExpression(MatchIn, "val-1")
|
|
|
|
m, err = r5.Execute(f)
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r5.Labels, m, "instances should have matched")
|
|
|
|
|
2021-03-04 12:39:42 +02:00
|
|
|
// Test MatchAny
|
|
|
|
r5.MatchAny = []MatchAnyElem{
|
|
|
|
MatchAnyElem{
|
|
|
|
MatchFeatures: FeatureMatcher{
|
|
|
|
FeatureMatcherTerm{
|
2021-05-12 13:56:24 +03:00
|
|
|
Feature: "domain-1.kf-1",
|
2021-06-07 12:03:21 +03:00
|
|
|
MatchExpressions: MatchExpressionSet{
|
|
|
|
Expressions: Expressions{"key-na": MustCreateMatchExpression(MatchExists)},
|
2021-05-12 13:56:24 +03:00
|
|
|
},
|
2021-03-04 12:39:42 +02:00
|
|
|
},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
}
|
2021-06-07 12:03:21 +03:00
|
|
|
m, err = r5.Execute(f)
|
2021-03-04 12:39:42 +02:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Nil(t, m, "instances should not have matched")
|
|
|
|
|
|
|
|
r5.MatchAny = append(r5.MatchAny,
|
|
|
|
MatchAnyElem{
|
|
|
|
MatchFeatures: FeatureMatcher{
|
|
|
|
FeatureMatcherTerm{
|
2021-05-12 13:56:24 +03:00
|
|
|
Feature: "domain-1.kf-1",
|
2021-06-07 12:03:21 +03:00
|
|
|
MatchExpressions: MatchExpressionSet{
|
|
|
|
Expressions: Expressions{"key-1": MustCreateMatchExpression(MatchExists)},
|
2021-05-12 13:56:24 +03:00
|
|
|
},
|
2021-03-04 12:39:42 +02:00
|
|
|
},
|
|
|
|
},
|
|
|
|
})
|
2021-06-07 12:03:21 +03:00
|
|
|
r5.MatchFeatures[0].MatchExpressions.Expressions["key-1"] = MustCreateMatchExpression(MatchIn, "val-1")
|
|
|
|
m, err = r5.Execute(f)
|
2021-03-04 12:39:42 +02:00
|
|
|
assert.Nilf(t, err, "unexpected error: %v", err)
|
|
|
|
assert.Equal(t, r5.Labels, m, "instances should have matched")
|
source/custom: implement generic feature matching
Implement generic feature matchers that cover all feature sources (that
implement the FeatureSource interface). The implementation relies on the
unified data model provided by the FeatureSource interface as well as
the generic expression-based rule processing framework that was added to
the source/custom/expression package.
With this patch any new features added will be automatically available
for custom rules, without any additional work. Rule hierarchy follows
the source/feature hierarchy by design.
This patch introduces a new format for custom rule specifications,
dropping the 'value' field and introducing new 'labels' field which
makes it possible to specify multiple labels per rule. Also, in the new
format the 'name' field is just for reference and no matching label is
created. The new generic rules are available in this new rule format
under a 'matchFeatures. MatchFeatures implements a logical AND over
an array of per-feature matchers - i.e. a match for all of the matchers
is required. The goal of the new rule format is to make it better follow
K8s API design guidelines and make it extensible for future enhancements
(e.g. addition of templating, taints, annotations, extended resources
etc).
The old rule format (with cpuID, kConfig, loadedKMod, nodename, pciID,
usbID rules) is still supported. The rule format (new vs. old) is
determined at config parsing time based on the existence of the
'matchOn' field.
The new rule format and the configuration format for the new
matchFeatures field is
- name: <rule-name>
labels:
<key>: <value>
...
matchFeatures:
- feature: <domain>.<feature>
matchExpressions:
<attribute>:
op: <operator>
value:
- <list-of-values>
- feature: <domain>.<feature>
...
Currently, "cpu", "kernel", "pci", "system", "usb" and "local" sources
are covered by the matshers/feature selectors. Thus, the following
features are available for matching with this patch:
- cpu.cpuid:
<cpuid-flag>: <exists/does-not-exist>
- cpu.cstate:
enabled: <bool>
- cpu.pstate:
status: <string>
turbo: <bool>
scaling_governor: <string>
- cpu.rdt:
<rdt-feature>: <exists/does-not-exist>
- cpu.sst:
bf.enabled: <bool>
- cpu.topology:
hardware_multithreading: <bool>
- kernel.config:
<flag-name>: <string>
- kernel.loadedmodule:
<module-name>: <exists/does-not-exist>
- kernel.selinux:
enabled: <bool>
- kernel.version:
major: <int>
minor: <int>
revision: <int>
full: <string>
- system.osrelease:
<key-name>: <string>
VERSION_ID.major: <int>
VERSION_ID.minor: <int>
- system.name:
nodename: <string>
- pci.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
subsystem_vendor: <string>
susbystem_device: <string>
sriov_totalvfs: <int>
- usb.device:
<device-instance>:
class: <string>
vendor: <string>
device: <string>
serial: <string>
- local.label:
<label-name>: <string>
The configuration also supports some "shortforms" for convenience:
matchExpressions: [<attr-1>, <attr-2>=<val-2>]
---
matchExpressions:
<attr-3>:
<attr-4>: <val-4>
is equal to:
matchExpressions:
<attr-1>: {op: Exists}
<attr-2>: {op: In, value: [<val-2>]}
---
matchExpressions:
<attr-3>: {op: Exists}
<attr-4>: {op: In, value: [<val-4>]}
In other words:
- feature: kernel.config
matchExpressions: ["X86", "INIT_ENV_ARG_LIMIT=32"]
- feature: pci.device
matchExpressions:
vendor: "8086"
is the same as:
- feature: kernel.config
matchExpressions:
X86: {op: Exists}
INIT_ENV_ARG_LIMIT: {op: In, values: ["32"]}
- feature: pci.device
matchExpressions:
vendor: {op: In, value: ["8086"]
Some configuration examples below. In order to match a CPUID feature the
following snippet can be used:
- name: cpu-test-1
labels:
cpu-custom-feature: "true"
matchFeatures:
- feature: cpu.cpuid
matchExpressions:
AESNI: {op: Exists}
AVX: {op: Exists}
In order to match against a loaded kernel module and OS version:
- name: kernel-test-1
labels:
kernel-custom-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
e1000: {op: Exists}
- feature: system.osrelease
matchExpressions:
NAME: {op: InRegexp, values: ["^openSUSE"]}
VERSION_ID.major: {op: Gt, values: ["14"]}
In order to require a kernel module and both of two specific PCI devices:
- name: multi-device-test
labels:
multi-device-feature: "true"
matchFeatures:
- feature: kernel.loadedmodule
matchExpressions:
driver-module: {op: Exists}
- pci.device:
vendor: "8086"
device: "1234"
- pci.device:
vendor: "8086"
device: "abcd"
2021-10-14 10:22:07 +03:00
|
|
|
}
|