1
0
Fork 0
mirror of https://github.com/arangodb/kube-arangodb.git synced 2024-12-14 11:57:37 +00:00

Adding API unit tests

This commit is contained in:
Ewout Prangsma 2018-02-27 13:26:47 +01:00
parent 2762759935
commit 88f7ca5722
No known key found for this signature in database
GPG key ID: 4DBAD380D93D0698
65 changed files with 14784 additions and 741 deletions

View file

@ -103,7 +103,8 @@ update-vendor:
github.com/prometheus/client_golang/prometheus \
github.com/pulcy/pulsar \
github.com/rs/zerolog \
github.com/spf13/cobra
github.com/spf13/cobra \
github.com/stretchr/testify
@$(PULSAR) go flatten -V $(VENDORDIR) $(VENDORDIR)
@${MAKE} -B -s clean
@ -159,7 +160,9 @@ $(TESTBIN): $(GOBUILDDIR) $(SOURCES)
-e CGO_ENABLED=0 \
-w /usr/code/ \
golang:$(GOVERSION) \
go test -c -installsuffix cgo -ldflags "-X main.projectVersion=$(VERSION) -X main.projectBuild=$(COMMIT)" -o /usr/code/bin/$(TESTBINNAME) $(REPOPATH)/tests
go test -c -installsuffix cgo -ldflags "-X main.projectVersion=$(VERSION) -X main.projectBuild=$(COMMIT)" -o /usr/code/bin/$(TESTBINNAME) \
$(REPOPATH)/pkg/api/arangodb/v1alpha \
$(REPOPATH)/tests
docker-test: $(TESTBIN)
docker build --quiet -f $(DOCKERTESTFILE) -t $(TESTIMAGE) .

View file

@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
.DS_Store

View file

@ -0,0 +1,7 @@
#!/bin/bash
if [ -n "$(gofmt -l .)" ]; then
echo "Go code is not formatted:"
gofmt -d .
exit 1
fi

View file

@ -0,0 +1,13 @@
#!/bin/bash
if [[ "$TRAVIS_GO_VERSION" =~ ^1\.[45](\..*)?$ ]]; then
exit 0
fi
go get github.com/ernesto-jimenez/gogen/imports
go generate ./...
if [ -n "$(git diff)" ]; then
echo "Go generate had not been run"
git diff
exit 1
fi

View file

@ -0,0 +1,10 @@
#!/bin/bash
cd "$(dirname $0)"
DIRS=". assert require mock _codegen"
set -e
for subdir in $DIRS; do
pushd $subdir
go vet
popd
done

View file

@ -0,0 +1,15 @@
language: go
sudo: false
go:
- 1.7
- 1.8
- 1.9
- tip
script:
- ./.travis.gogenerate.sh
- ./.travis.gofmt.sh
- ./.travis.govet.sh
- go test -v -race $(go list ./... | grep -v vendor)

27
deps/github.com/stretchr/testify/Gopkg.lock generated vendored Normal file
View file

@ -0,0 +1,27 @@
# This file is autogenerated, do not edit; changes may be undone by the next 'dep ensure'.
[[projects]]
name = "github.com/davecgh/go-spew"
packages = ["spew"]
revision = "346938d642f2ec3594ed81d874461961cd0faa76"
version = "v1.1.0"
[[projects]]
name = "github.com/pmezard/go-difflib"
packages = ["difflib"]
revision = "792786c7400a136282c1664665ae0a8db921c6c2"
version = "v1.0.0"
[[projects]]
name = "github.com/stretchr/objx"
packages = ["."]
revision = "facf9a85c22f48d2f52f2380e4efce1768749a89"
version = "v0.1"
[solve-meta]
analyzer-name = "dep"
analyzer-version = 1
inputs-digest = "448ddae4702c6aded2555faafd390c537789bb1c483f70b0431e6634f73f2090"
solver-name = "gps-cdcl"
solver-version = 1

View file

@ -0,0 +1,16 @@
[prune]
unused-packages = true
non-go = true
go-tests = true
[[constraint]]
name = "github.com/davecgh/go-spew"
version = "~1.1.0"
[[constraint]]
name = "github.com/pmezard/go-difflib"
version = "~1.0.0"
[[constraint]]
name = "github.com/stretchr/objx"
version = "~0.1.0"

View file

@ -0,0 +1,301 @@
Testify - Thou Shalt Write Tests
================================
[![Build Status](https://travis-ci.org/stretchr/testify.svg)](https://travis-ci.org/stretchr/testify) [![Go Report Card](https://goreportcard.com/badge/github.com/stretchr/testify)](https://goreportcard.com/report/github.com/stretchr/testify) [![GoDoc](https://godoc.org/github.com/stretchr/testify?status.svg)](https://godoc.org/github.com/stretchr/testify)
Go code (golang) set of packages that provide many tools for testifying that your code will behave as you intend.
Features include:
* [Easy assertions](#assert-package)
* [Mocking](#mock-package)
* [Testing suite interfaces and functions](#suite-package)
Get started:
* Install testify with [one line of code](#installation), or [update it with another](#staying-up-to-date)
* For an introduction to writing test code in Go, see http://golang.org/doc/code.html#Testing
* Check out the API Documentation http://godoc.org/github.com/stretchr/testify
* To make your testing life easier, check out our other project, [gorc](http://github.com/stretchr/gorc)
* A little about [Test-Driven Development (TDD)](http://en.wikipedia.org/wiki/Test-driven_development)
[`assert`](http://godoc.org/github.com/stretchr/testify/assert "API documentation") package
-------------------------------------------------------------------------------------------
The `assert` package provides some helpful methods that allow you to write better test code in Go.
* Prints friendly, easy to read failure descriptions
* Allows for very readable code
* Optionally annotate each assertion with a message
See it in action:
```go
package yours
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestSomething(t *testing.T) {
// assert equality
assert.Equal(t, 123, 123, "they should be equal")
// assert inequality
assert.NotEqual(t, 123, 456, "they should not be equal")
// assert for nil (good for errors)
assert.Nil(t, object)
// assert for not nil (good when you expect something)
if assert.NotNil(t, object) {
// now we know that object isn't nil, we are safe to make
// further assertions without causing any errors
assert.Equal(t, "Something", object.Value)
}
}
```
* Every assert func takes the `testing.T` object as the first argument. This is how it writes the errors out through the normal `go test` capabilities.
* Every assert func returns a bool indicating whether the assertion was successful or not, this is useful for if you want to go on making further assertions under certain conditions.
if you assert many times, use the below:
```go
package yours
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestSomething(t *testing.T) {
assert := assert.New(t)
// assert equality
assert.Equal(123, 123, "they should be equal")
// assert inequality
assert.NotEqual(123, 456, "they should not be equal")
// assert for nil (good for errors)
assert.Nil(object)
// assert for not nil (good when you expect something)
if assert.NotNil(object) {
// now we know that object isn't nil, we are safe to make
// further assertions without causing any errors
assert.Equal("Something", object.Value)
}
}
```
[`require`](http://godoc.org/github.com/stretchr/testify/require "API documentation") package
---------------------------------------------------------------------------------------------
The `require` package provides same global functions as the `assert` package, but instead of returning a boolean result they terminate current test.
See [t.FailNow](http://golang.org/pkg/testing/#T.FailNow) for details.
[`mock`](http://godoc.org/github.com/stretchr/testify/mock "API documentation") package
----------------------------------------------------------------------------------------
The `mock` package provides a mechanism for easily writing mock objects that can be used in place of real objects when writing test code.
An example test function that tests a piece of code that relies on an external object `testObj`, can setup expectations (testify) and assert that they indeed happened:
```go
package yours
import (
"testing"
"github.com/stretchr/testify/mock"
)
/*
Test objects
*/
// MyMockedObject is a mocked object that implements an interface
// that describes an object that the code I am testing relies on.
type MyMockedObject struct{
mock.Mock
}
// DoSomething is a method on MyMockedObject that implements some interface
// and just records the activity, and returns what the Mock object tells it to.
//
// In the real object, this method would do something useful, but since this
// is a mocked object - we're just going to stub it out.
//
// NOTE: This method is not being tested here, code that uses this object is.
func (m *MyMockedObject) DoSomething(number int) (bool, error) {
args := m.Called(number)
return args.Bool(0), args.Error(1)
}
/*
Actual test functions
*/
// TestSomething is an example of how to use our test object to
// make assertions about some target code we are testing.
func TestSomething(t *testing.T) {
// create an instance of our test object
testObj := new(MyMockedObject)
// setup expectations
testObj.On("DoSomething", 123).Return(true, nil)
// call the code we are testing
targetFuncThatDoesSomethingWithObj(testObj)
// assert that the expectations were met
testObj.AssertExpectations(t)
}
```
For more information on how to write mock code, check out the [API documentation for the `mock` package](http://godoc.org/github.com/stretchr/testify/mock).
You can use the [mockery tool](http://github.com/vektra/mockery) to autogenerate the mock code against an interface as well, making using mocks much quicker.
[`suite`](http://godoc.org/github.com/stretchr/testify/suite "API documentation") package
-----------------------------------------------------------------------------------------
The `suite` package provides functionality that you might be used to from more common object oriented languages. With it, you can build a testing suite as a struct, build setup/teardown methods and testing methods on your struct, and run them with 'go test' as per normal.
An example suite is shown below:
```go
// Basic imports
import (
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/suite"
)
// Define the suite, and absorb the built-in basic suite
// functionality from testify - including a T() method which
// returns the current testing context
type ExampleTestSuite struct {
suite.Suite
VariableThatShouldStartAtFive int
}
// Make sure that VariableThatShouldStartAtFive is set to five
// before each test
func (suite *ExampleTestSuite) SetupTest() {
suite.VariableThatShouldStartAtFive = 5
}
// All methods that begin with "Test" are run as tests within a
// suite.
func (suite *ExampleTestSuite) TestExample() {
assert.Equal(suite.T(), 5, suite.VariableThatShouldStartAtFive)
}
// In order for 'go test' to run this suite, we need to create
// a normal test function and pass our suite to suite.Run
func TestExampleTestSuite(t *testing.T) {
suite.Run(t, new(ExampleTestSuite))
}
```
For a more complete example, using all of the functionality provided by the suite package, look at our [example testing suite](https://github.com/stretchr/testify/blob/master/suite/suite_test.go)
For more information on writing suites, check out the [API documentation for the `suite` package](http://godoc.org/github.com/stretchr/testify/suite).
`Suite` object has assertion methods:
```go
// Basic imports
import (
"testing"
"github.com/stretchr/testify/suite"
)
// Define the suite, and absorb the built-in basic suite
// functionality from testify - including assertion methods.
type ExampleTestSuite struct {
suite.Suite
VariableThatShouldStartAtFive int
}
// Make sure that VariableThatShouldStartAtFive is set to five
// before each test
func (suite *ExampleTestSuite) SetupTest() {
suite.VariableThatShouldStartAtFive = 5
}
// All methods that begin with "Test" are run as tests within a
// suite.
func (suite *ExampleTestSuite) TestExample() {
suite.Equal(suite.VariableThatShouldStartAtFive, 5)
}
// In order for 'go test' to run this suite, we need to create
// a normal test function and pass our suite to suite.Run
func TestExampleTestSuite(t *testing.T) {
suite.Run(t, new(ExampleTestSuite))
}
```
------
Installation
============
To install Testify, use `go get`:
go get github.com/stretchr/testify
This will then make the following packages available to you:
github.com/stretchr/testify/assert
github.com/stretchr/testify/mock
github.com/stretchr/testify/http
Import the `testify/assert` package into your code using this template:
```go
package yours
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestSomething(t *testing.T) {
assert.True(t, true, "True is true!")
}
```
------
Staying up to date
==================
To update Testify to the latest version, use `go get -u github.com/stretchr/testify`.
------
Contributing
============
Please feel free to submit issues, fork the repository and send pull requests!
When submitting an issue, we ask that you please include a complete test function that demonstrates the issue. Extra credit for those using Testify to write the test code that demonstrates it.

View file

@ -0,0 +1,316 @@
// This program reads all assertion functions from the assert package and
// automatically generates the corresponding requires and forwarded assertions
package main
import (
"bytes"
"flag"
"fmt"
"go/ast"
"go/build"
"go/doc"
"go/format"
"go/importer"
"go/parser"
"go/token"
"go/types"
"io"
"io/ioutil"
"log"
"os"
"path"
"regexp"
"strings"
"text/template"
"github.com/ernesto-jimenez/gogen/imports"
)
var (
pkg = flag.String("assert-path", "github.com/stretchr/testify/assert", "Path to the assert package")
includeF = flag.Bool("include-format-funcs", false, "include format functions such as Errorf and Equalf")
outputPkg = flag.String("output-package", "", "package for the resulting code")
tmplFile = flag.String("template", "", "What file to load the function template from")
out = flag.String("out", "", "What file to write the source code to")
)
func main() {
flag.Parse()
scope, docs, err := parsePackageSource(*pkg)
if err != nil {
log.Fatal(err)
}
importer, funcs, err := analyzeCode(scope, docs)
if err != nil {
log.Fatal(err)
}
if err := generateCode(importer, funcs); err != nil {
log.Fatal(err)
}
}
func generateCode(importer imports.Importer, funcs []testFunc) error {
buff := bytes.NewBuffer(nil)
tmplHead, tmplFunc, err := parseTemplates()
if err != nil {
return err
}
// Generate header
if err := tmplHead.Execute(buff, struct {
Name string
Imports map[string]string
}{
*outputPkg,
importer.Imports(),
}); err != nil {
return err
}
// Generate funcs
for _, fn := range funcs {
buff.Write([]byte("\n\n"))
if err := tmplFunc.Execute(buff, &fn); err != nil {
return err
}
}
code, err := format.Source(buff.Bytes())
if err != nil {
return err
}
// Write file
output, err := outputFile()
if err != nil {
return err
}
defer output.Close()
_, err = io.Copy(output, bytes.NewReader(code))
return err
}
func parseTemplates() (*template.Template, *template.Template, error) {
tmplHead, err := template.New("header").Parse(headerTemplate)
if err != nil {
return nil, nil, err
}
if *tmplFile != "" {
f, err := ioutil.ReadFile(*tmplFile)
if err != nil {
return nil, nil, err
}
funcTemplate = string(f)
}
tmpl, err := template.New("function").Parse(funcTemplate)
if err != nil {
return nil, nil, err
}
return tmplHead, tmpl, nil
}
func outputFile() (*os.File, error) {
filename := *out
if filename == "-" || (filename == "" && *tmplFile == "") {
return os.Stdout, nil
}
if filename == "" {
filename = strings.TrimSuffix(strings.TrimSuffix(*tmplFile, ".tmpl"), ".go") + ".go"
}
return os.Create(filename)
}
// analyzeCode takes the types scope and the docs and returns the import
// information and information about all the assertion functions.
func analyzeCode(scope *types.Scope, docs *doc.Package) (imports.Importer, []testFunc, error) {
testingT := scope.Lookup("TestingT").Type().Underlying().(*types.Interface)
importer := imports.New(*outputPkg)
var funcs []testFunc
// Go through all the top level functions
for _, fdocs := range docs.Funcs {
// Find the function
obj := scope.Lookup(fdocs.Name)
fn, ok := obj.(*types.Func)
if !ok {
continue
}
// Check function signature has at least two arguments
sig := fn.Type().(*types.Signature)
if sig.Params().Len() < 2 {
continue
}
// Check first argument is of type testingT
first, ok := sig.Params().At(0).Type().(*types.Named)
if !ok {
continue
}
firstType, ok := first.Underlying().(*types.Interface)
if !ok {
continue
}
if !types.Implements(firstType, testingT) {
continue
}
// Skip functions ending with f
if strings.HasSuffix(fdocs.Name, "f") && !*includeF {
continue
}
funcs = append(funcs, testFunc{*outputPkg, fdocs, fn})
importer.AddImportsFrom(sig.Params())
}
return importer, funcs, nil
}
// parsePackageSource returns the types scope and the package documentation from the package
func parsePackageSource(pkg string) (*types.Scope, *doc.Package, error) {
pd, err := build.Import(pkg, ".", 0)
if err != nil {
return nil, nil, err
}
fset := token.NewFileSet()
files := make(map[string]*ast.File)
fileList := make([]*ast.File, len(pd.GoFiles))
for i, fname := range pd.GoFiles {
src, err := ioutil.ReadFile(path.Join(pd.SrcRoot, pd.ImportPath, fname))
if err != nil {
return nil, nil, err
}
f, err := parser.ParseFile(fset, fname, src, parser.ParseComments|parser.AllErrors)
if err != nil {
return nil, nil, err
}
files[fname] = f
fileList[i] = f
}
cfg := types.Config{
Importer: importer.Default(),
}
info := types.Info{
Defs: make(map[*ast.Ident]types.Object),
}
tp, err := cfg.Check(pkg, fset, fileList, &info)
if err != nil {
return nil, nil, err
}
scope := tp.Scope()
ap, _ := ast.NewPackage(fset, files, nil, nil)
docs := doc.New(ap, pkg, 0)
return scope, docs, nil
}
type testFunc struct {
CurrentPkg string
DocInfo *doc.Func
TypeInfo *types.Func
}
func (f *testFunc) Qualifier(p *types.Package) string {
if p == nil || p.Name() == f.CurrentPkg {
return ""
}
return p.Name()
}
func (f *testFunc) Params() string {
sig := f.TypeInfo.Type().(*types.Signature)
params := sig.Params()
p := ""
comma := ""
to := params.Len()
var i int
if sig.Variadic() {
to--
}
for i = 1; i < to; i++ {
param := params.At(i)
p += fmt.Sprintf("%s%s %s", comma, param.Name(), types.TypeString(param.Type(), f.Qualifier))
comma = ", "
}
if sig.Variadic() {
param := params.At(params.Len() - 1)
p += fmt.Sprintf("%s%s ...%s", comma, param.Name(), types.TypeString(param.Type().(*types.Slice).Elem(), f.Qualifier))
}
return p
}
func (f *testFunc) ForwardedParams() string {
sig := f.TypeInfo.Type().(*types.Signature)
params := sig.Params()
p := ""
comma := ""
to := params.Len()
var i int
if sig.Variadic() {
to--
}
for i = 1; i < to; i++ {
param := params.At(i)
p += fmt.Sprintf("%s%s", comma, param.Name())
comma = ", "
}
if sig.Variadic() {
param := params.At(params.Len() - 1)
p += fmt.Sprintf("%s%s...", comma, param.Name())
}
return p
}
func (f *testFunc) ParamsFormat() string {
return strings.Replace(f.Params(), "msgAndArgs", "msg string, args", 1)
}
func (f *testFunc) ForwardedParamsFormat() string {
return strings.Replace(f.ForwardedParams(), "msgAndArgs", "append([]interface{}{msg}, args...)", 1)
}
func (f *testFunc) Comment() string {
return "// " + strings.Replace(strings.TrimSpace(f.DocInfo.Doc), "\n", "\n// ", -1)
}
func (f *testFunc) CommentFormat() string {
search := fmt.Sprintf("%s", f.DocInfo.Name)
replace := fmt.Sprintf("%sf", f.DocInfo.Name)
comment := strings.Replace(f.Comment(), search, replace, -1)
exp := regexp.MustCompile(replace + `\(((\(\)|[^)])+)\)`)
return exp.ReplaceAllString(comment, replace+`($1, "error message %s", "formatted")`)
}
func (f *testFunc) CommentWithoutT(receiver string) string {
search := fmt.Sprintf("assert.%s(t, ", f.DocInfo.Name)
replace := fmt.Sprintf("%s.%s(", receiver, f.DocInfo.Name)
return strings.Replace(f.Comment(), search, replace, -1)
}
var headerTemplate = `/*
* CODE GENERATED AUTOMATICALLY WITH github.com/stretchr/testify/_codegen
* THIS FILE MUST NOT BE EDITED BY HAND
*/
package {{.Name}}
import (
{{range $path, $name := .Imports}}
{{$name}} "{{$path}}"{{end}}
)
`
var funcTemplate = `{{.Comment}}
func (fwd *AssertionsForwarder) {{.DocInfo.Name}}({{.Params}}) bool {
return assert.{{.DocInfo.Name}}({{.ForwardedParams}})
}`

View file

@ -13,6 +13,9 @@ import (
// Conditionf uses a Comparison to assert a complex condition.
func Conditionf(t TestingT, comp Comparison, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Condition(t, comp, append([]interface{}{msg}, args...)...)
}
@ -22,19 +25,41 @@ func Conditionf(t TestingT, comp Comparison, msg string, args ...interface{}) bo
// assert.Containsf(t, "Hello World", "World", "error message %s", "formatted")
// assert.Containsf(t, ["Hello", "World"], "World", "error message %s", "formatted")
// assert.Containsf(t, {"Hello": "World"}, "Hello", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Containsf(t TestingT, s interface{}, contains interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Contains(t, s, contains, append([]interface{}{msg}, args...)...)
}
// DirExistsf checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
func DirExistsf(t TestingT, path string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return DirExists(t, path, append([]interface{}{msg}, args...)...)
}
// ElementsMatchf asserts that the specified listA(array, slice...) is equal to specified
// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
// the number of appearances of each of them in both lists should match.
//
// assert.ElementsMatchf(t, [1, 3, 2, 3], [1, 3, 3, 2], "error message %s", "formatted")
func ElementsMatchf(t TestingT, listA interface{}, listB interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return ElementsMatch(t, listA, listB, append([]interface{}{msg}, args...)...)
}
// Emptyf asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// assert.Emptyf(t, obj, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Emptyf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Empty(t, object, append([]interface{}{msg}, args...)...)
}
@ -42,12 +67,13 @@ func Emptyf(t TestingT, object interface{}, msg string, args ...interface{}) boo
//
// assert.Equalf(t, 123, 123, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses). Function equality
// cannot be determined and will always fail.
func Equalf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Equal(t, expected, actual, append([]interface{}{msg}, args...)...)
}
@ -56,9 +82,10 @@ func Equalf(t TestingT, expected interface{}, actual interface{}, msg string, ar
//
// actualObj, err := SomeFunction()
// assert.EqualErrorf(t, err, expectedErrorString, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func EqualErrorf(t TestingT, theError error, errString string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return EqualError(t, theError, errString, append([]interface{}{msg}, args...)...)
}
@ -66,9 +93,10 @@ func EqualErrorf(t TestingT, theError error, errString string, msg string, args
// and equal.
//
// assert.EqualValuesf(t, uint32(123, "error message %s", "formatted"), int32(123))
//
// Returns whether the assertion was successful (true) or not (false).
func EqualValuesf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return EqualValues(t, expected, actual, append([]interface{}{msg}, args...)...)
}
@ -78,48 +106,68 @@ func EqualValuesf(t TestingT, expected interface{}, actual interface{}, msg stri
// if assert.Errorf(t, err, "error message %s", "formatted") {
// assert.Equal(t, expectedErrorf, err)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func Errorf(t TestingT, err error, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Error(t, err, append([]interface{}{msg}, args...)...)
}
// Exactlyf asserts that two objects are equal is value and type.
// Exactlyf asserts that two objects are equal in value and type.
//
// assert.Exactlyf(t, int32(123, "error message %s", "formatted"), int64(123))
//
// Returns whether the assertion was successful (true) or not (false).
func Exactlyf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Exactly(t, expected, actual, append([]interface{}{msg}, args...)...)
}
// Failf reports a failure through
func Failf(t TestingT, failureMessage string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Fail(t, failureMessage, append([]interface{}{msg}, args...)...)
}
// FailNowf fails test
func FailNowf(t TestingT, failureMessage string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return FailNow(t, failureMessage, append([]interface{}{msg}, args...)...)
}
// Falsef asserts that the specified value is false.
//
// assert.Falsef(t, myBool, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Falsef(t TestingT, value bool, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return False(t, value, append([]interface{}{msg}, args...)...)
}
// FileExistsf checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
func FileExistsf(t TestingT, path string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return FileExists(t, path, append([]interface{}{msg}, args...)...)
}
// HTTPBodyContainsf asserts that a specified handler returns a
// body that contains a string.
//
// assert.HTTPBodyContainsf(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyContainsf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
return HTTPBodyContains(t, handler, method, url, values, str)
func HTTPBodyContainsf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPBodyContains(t, handler, method, url, values, str, append([]interface{}{msg}, args...)...)
}
// HTTPBodyNotContainsf asserts that a specified handler returns a
@ -128,8 +176,11 @@ func HTTPBodyContainsf(t TestingT, handler http.HandlerFunc, method string, url
// assert.HTTPBodyNotContainsf(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyNotContainsf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, str interface{}) bool {
return HTTPBodyNotContains(t, handler, method, url, values, str)
func HTTPBodyNotContainsf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, str interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPBodyNotContains(t, handler, method, url, values, str, append([]interface{}{msg}, args...)...)
}
// HTTPErrorf asserts that a specified handler returns an error status code.
@ -137,8 +188,11 @@ func HTTPBodyNotContainsf(t TestingT, handler http.HandlerFunc, method string, u
// assert.HTTPErrorf(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
func HTTPErrorf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPError(t, handler, method, url, values)
func HTTPErrorf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPError(t, handler, method, url, values, append([]interface{}{msg}, args...)...)
}
// HTTPRedirectf asserts that a specified handler returns a redirect status code.
@ -146,8 +200,11 @@ func HTTPErrorf(t TestingT, handler http.HandlerFunc, method string, url string,
// assert.HTTPRedirectf(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true, "error message %s", "formatted") or not (false).
func HTTPRedirectf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPRedirect(t, handler, method, url, values)
func HTTPRedirectf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPRedirect(t, handler, method, url, values, append([]interface{}{msg}, args...)...)
}
// HTTPSuccessf asserts that a specified handler returns a success status code.
@ -155,54 +212,80 @@ func HTTPRedirectf(t TestingT, handler http.HandlerFunc, method string, url stri
// assert.HTTPSuccessf(t, myHandler, "POST", "http://www.google.com", nil, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPSuccessf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values) bool {
return HTTPSuccess(t, handler, method, url, values)
func HTTPSuccessf(t TestingT, handler http.HandlerFunc, method string, url string, values url.Values, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return HTTPSuccess(t, handler, method, url, values, append([]interface{}{msg}, args...)...)
}
// Implementsf asserts that an object is implemented by the specified interface.
//
// assert.Implementsf(t, (*MyInterface, "error message %s", "formatted")(nil), new(MyObject))
func Implementsf(t TestingT, interfaceObject interface{}, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Implements(t, interfaceObject, object, append([]interface{}{msg}, args...)...)
}
// InDeltaf asserts that the two numerals are within delta of each other.
//
// assert.InDeltaf(t, math.Pi, (22 / 7.0, "error message %s", "formatted"), 0.01)
//
// Returns whether the assertion was successful (true) or not (false).
func InDeltaf(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InDelta(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
}
// InDeltaMapValuesf is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
func InDeltaMapValuesf(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InDeltaMapValues(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
}
// InDeltaSlicef is the same as InDelta, except it compares two slices.
func InDeltaSlicef(t TestingT, expected interface{}, actual interface{}, delta float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InDeltaSlice(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
}
// InEpsilonf asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func InEpsilonf(t TestingT, expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InEpsilon(t, expected, actual, epsilon, append([]interface{}{msg}, args...)...)
}
// InEpsilonSlicef is the same as InEpsilon, except it compares each value from two slices.
func InEpsilonSlicef(t TestingT, expected interface{}, actual interface{}, epsilon float64, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return InEpsilonSlice(t, expected, actual, epsilon, append([]interface{}{msg}, args...)...)
}
// IsTypef asserts that the specified objects are of the same type.
func IsTypef(t TestingT, expectedType interface{}, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return IsType(t, expectedType, object, append([]interface{}{msg}, args...)...)
}
// JSONEqf asserts that two JSON strings are equivalent.
//
// assert.JSONEqf(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func JSONEqf(t TestingT, expected string, actual string, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return JSONEq(t, expected, actual, append([]interface{}{msg}, args...)...)
}
@ -210,18 +293,20 @@ func JSONEqf(t TestingT, expected string, actual string, msg string, args ...int
// Lenf also fails if the object has a type that len() not accept.
//
// assert.Lenf(t, mySlice, 3, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Lenf(t TestingT, object interface{}, length int, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Len(t, object, length, append([]interface{}{msg}, args...)...)
}
// Nilf asserts that the specified object is nil.
//
// assert.Nilf(t, err, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Nilf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Nil(t, object, append([]interface{}{msg}, args...)...)
}
@ -231,9 +316,10 @@ func Nilf(t TestingT, object interface{}, msg string, args ...interface{}) bool
// if assert.NoErrorf(t, err, "error message %s", "formatted") {
// assert.Equal(t, expectedObj, actualObj)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NoErrorf(t TestingT, err error, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NoError(t, err, append([]interface{}{msg}, args...)...)
}
@ -243,9 +329,10 @@ func NoErrorf(t TestingT, err error, msg string, args ...interface{}) bool {
// assert.NotContainsf(t, "Hello World", "Earth", "error message %s", "formatted")
// assert.NotContainsf(t, ["Hello", "World"], "Earth", "error message %s", "formatted")
// assert.NotContainsf(t, {"Hello": "World"}, "Earth", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func NotContainsf(t TestingT, s interface{}, contains interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotContains(t, s, contains, append([]interface{}{msg}, args...)...)
}
@ -255,9 +342,10 @@ func NotContainsf(t TestingT, s interface{}, contains interface{}, msg string, a
// if assert.NotEmptyf(t, obj, "error message %s", "formatted") {
// assert.Equal(t, "two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NotEmptyf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotEmpty(t, object, append([]interface{}{msg}, args...)...)
}
@ -265,29 +353,32 @@ func NotEmptyf(t TestingT, object interface{}, msg string, args ...interface{})
//
// assert.NotEqualf(t, obj1, obj2, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses).
func NotEqualf(t TestingT, expected interface{}, actual interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotEqual(t, expected, actual, append([]interface{}{msg}, args...)...)
}
// NotNilf asserts that the specified object is not nil.
//
// assert.NotNilf(t, err, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func NotNilf(t TestingT, object interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotNil(t, object, append([]interface{}{msg}, args...)...)
}
// NotPanicsf asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// assert.NotPanicsf(t, func(){ RemainCalm() }, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func NotPanicsf(t TestingT, f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotPanics(t, f, append([]interface{}{msg}, args...)...)
}
@ -295,9 +386,10 @@ func NotPanicsf(t TestingT, f PanicTestFunc, msg string, args ...interface{}) bo
//
// assert.NotRegexpf(t, regexp.MustCompile("starts", "error message %s", "formatted"), "it's starting")
// assert.NotRegexpf(t, "^start", "it's not starting", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func NotRegexpf(t TestingT, rx interface{}, str interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotRegexp(t, rx, str, append([]interface{}{msg}, args...)...)
}
@ -305,23 +397,28 @@ func NotRegexpf(t TestingT, rx interface{}, str interface{}, msg string, args ..
// elements given in the specified subset(array, slice...).
//
// assert.NotSubsetf(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func NotSubsetf(t TestingT, list interface{}, subset interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotSubset(t, list, subset, append([]interface{}{msg}, args...)...)
}
// NotZerof asserts that i is not the zero value for its type and returns the truth.
// NotZerof asserts that i is not the zero value for its type.
func NotZerof(t TestingT, i interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return NotZero(t, i, append([]interface{}{msg}, args...)...)
}
// Panicsf asserts that the code inside the specified PanicTestFunc panics.
//
// assert.Panicsf(t, func(){ GoCrazy() }, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Panicsf(t TestingT, f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Panics(t, f, append([]interface{}{msg}, args...)...)
}
@ -329,9 +426,10 @@ func Panicsf(t TestingT, f PanicTestFunc, msg string, args ...interface{}) bool
// the recovered panic value equals the expected panic value.
//
// assert.PanicsWithValuef(t, "crazy error", func(){ GoCrazy() }, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func PanicsWithValuef(t TestingT, expected interface{}, f PanicTestFunc, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return PanicsWithValue(t, expected, f, append([]interface{}{msg}, args...)...)
}
@ -339,9 +437,10 @@ func PanicsWithValuef(t TestingT, expected interface{}, f PanicTestFunc, msg str
//
// assert.Regexpf(t, regexp.MustCompile("start", "error message %s", "formatted"), "it's starting")
// assert.Regexpf(t, "start...$", "it's not starting", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Regexpf(t TestingT, rx interface{}, str interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Regexp(t, rx, str, append([]interface{}{msg}, args...)...)
}
@ -349,31 +448,37 @@ func Regexpf(t TestingT, rx interface{}, str interface{}, msg string, args ...in
// elements given in the specified subset(array, slice...).
//
// assert.Subsetf(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]", "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Subsetf(t TestingT, list interface{}, subset interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Subset(t, list, subset, append([]interface{}{msg}, args...)...)
}
// Truef asserts that the specified value is true.
//
// assert.Truef(t, myBool, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func Truef(t TestingT, value bool, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return True(t, value, append([]interface{}{msg}, args...)...)
}
// WithinDurationf asserts that the two times are within duration delta of each other.
//
// assert.WithinDurationf(t, time.Now(), time.Now(), 10*time.Second, "error message %s", "formatted")
//
// Returns whether the assertion was successful (true) or not (false).
func WithinDurationf(t TestingT, expected time.Time, actual time.Time, delta time.Duration, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return WithinDuration(t, expected, actual, delta, append([]interface{}{msg}, args...)...)
}
// Zerof asserts that i is the zero value for its type and returns the truth.
// Zerof asserts that i is the zero value for its type.
func Zerof(t TestingT, i interface{}, msg string, args ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
return Zero(t, i, append([]interface{}{msg}, args...)...)
}

View file

@ -1,4 +1,5 @@
{{.CommentFormat}}
func {{.DocInfo.Name}}f(t TestingT, {{.ParamsFormat}}) bool {
if h, ok := t.(tHelper); ok { h.Helper() }
return {{.DocInfo.Name}}(t, {{.ForwardedParamsFormat}})
}

File diff suppressed because it is too large Load diff

View file

@ -1,4 +1,5 @@
{{.CommentWithoutT "a"}}
func (a *Assertions) {{.DocInfo.Name}}({{.Params}}) bool {
if h, ok := a.t.(tHelper); ok { h.Helper() }
return {{.DocInfo.Name}}(a.t, {{.ForwardedParams}})
}

View file

@ -7,6 +7,7 @@ import (
"errors"
"fmt"
"math"
"os"
"reflect"
"regexp"
"runtime"
@ -155,21 +156,6 @@ func isTest(name, prefix string) bool {
return !unicode.IsLower(rune)
}
// getWhitespaceString returns a string that is long enough to overwrite the default
// output from the go testing framework.
func getWhitespaceString() string {
_, file, line, ok := runtime.Caller(1)
if !ok {
return ""
}
parts := strings.Split(file, "/")
file = parts[len(parts)-1]
return strings.Repeat(" ", len(fmt.Sprintf("%s:%d: ", file, line)))
}
func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
if len(msgAndArgs) == 0 || msgAndArgs == nil {
return ""
@ -194,7 +180,7 @@ func indentMessageLines(message string, longestLabelLen int) string {
// no need to align first line because it starts at the correct location (after the label)
if i != 0 {
// append alignLen+1 spaces to align with "{{longestLabel}}:" before adding tab
outBuf.WriteString("\n\r\t" + strings.Repeat(" ", longestLabelLen+1) + "\t")
outBuf.WriteString("\n\t" + strings.Repeat(" ", longestLabelLen+1) + "\t")
}
outBuf.WriteString(scanner.Text())
}
@ -208,6 +194,9 @@ type failNower interface {
// FailNow fails test
func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
Fail(t, failureMessage, msgAndArgs...)
// We cannot extend TestingT with FailNow() and
@ -226,17 +215,27 @@ func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool
// Fail reports a failure through
func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
content := []labeledContent{
{"Error Trace", strings.Join(CallerInfo(), "\n\r\t\t\t")},
{"Error Trace", strings.Join(CallerInfo(), "\n\t\t\t")},
{"Error", failureMessage},
}
// Add test name if the Go version supports it
if n, ok := t.(interface {
Name() string
}); ok {
content = append(content, labeledContent{"Test", n.Name()})
}
message := messageFromMsgAndArgs(msgAndArgs...)
if len(message) > 0 {
content = append(content, labeledContent{"Messages", message})
}
t.Errorf("%s", "\r"+getWhitespaceString()+labeledOutput(content...))
t.Errorf("\n%s", ""+labeledOutput(content...))
return false
}
@ -248,7 +247,7 @@ type labeledContent struct {
// labeledOutput returns a string consisting of the provided labeledContent. Each labeled output is appended in the following manner:
//
// \r\t{{label}}:{{align_spaces}}\t{{content}}\n
// \t{{label}}:{{align_spaces}}\t{{content}}\n
//
// The initial carriage return is required to undo/erase any padding added by testing.T.Errorf. The "\t{{label}}:" is for the label.
// If a label is shorter than the longest label provided, padding spaces are added to make all the labels match in length. Once this
@ -264,7 +263,7 @@ func labeledOutput(content ...labeledContent) string {
}
var output string
for _, v := range content {
output += "\r\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n"
output += "\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n"
}
return output
}
@ -273,19 +272,26 @@ func labeledOutput(content ...labeledContent) string {
//
// assert.Implements(t, (*MyInterface)(nil), new(MyObject))
func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
interfaceType := reflect.TypeOf(interfaceObject).Elem()
if object == nil {
return Fail(t, fmt.Sprintf("Cannot check if nil implements %v", interfaceType), msgAndArgs...)
}
if !reflect.TypeOf(object).Implements(interfaceType) {
return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
}
return true
}
// IsType asserts that the specified objects are of the same type.
func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
@ -298,12 +304,13 @@ func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs
//
// assert.Equal(t, 123, 123)
//
// Returns whether the assertion was successful (true) or not (false).
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses). Function equality
// cannot be determined and will always fail.
func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if err := validateEqualArgs(expected, actual); err != nil {
return Fail(t, fmt.Sprintf("Invalid operation: %#v == %#v (%s)",
expected, actual, err), msgAndArgs...)
@ -314,7 +321,7 @@ func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{})
expected, actual = formatUnequalValues(expected, actual)
return Fail(t, fmt.Sprintf("Not equal: \n"+
"expected: %s\n"+
"actual: %s%s", expected, actual, diff), msgAndArgs...)
"actual : %s%s", expected, actual, diff), msgAndArgs...)
}
return true
@ -341,34 +348,36 @@ func formatUnequalValues(expected, actual interface{}) (e string, a string) {
// and equal.
//
// assert.EqualValues(t, uint32(123), int32(123))
//
// Returns whether the assertion was successful (true) or not (false).
func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if !ObjectsAreEqualValues(expected, actual) {
diff := diff(expected, actual)
expected, actual = formatUnequalValues(expected, actual)
return Fail(t, fmt.Sprintf("Not equal: \n"+
"expected: %s\n"+
"actual: %s%s", expected, actual, diff), msgAndArgs...)
"actual : %s%s", expected, actual, diff), msgAndArgs...)
}
return true
}
// Exactly asserts that two objects are equal is value and type.
// Exactly asserts that two objects are equal in value and type.
//
// assert.Exactly(t, int32(123), int64(123))
//
// Returns whether the assertion was successful (true) or not (false).
func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
aType := reflect.TypeOf(expected)
bType := reflect.TypeOf(actual)
if aType != bType {
return Fail(t, fmt.Sprintf("Types expected to match exactly\n\r\t%v != %v", aType, bType), msgAndArgs...)
return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...)
}
return Equal(t, expected, actual, msgAndArgs...)
@ -378,9 +387,10 @@ func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}
// NotNil asserts that the specified object is not nil.
//
// assert.NotNil(t, err)
//
// Returns whether the assertion was successful (true) or not (false).
func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if !isNil(object) {
return true
}
@ -405,84 +415,52 @@ func isNil(object interface{}) bool {
// Nil asserts that the specified object is nil.
//
// assert.Nil(t, err)
//
// Returns whether the assertion was successful (true) or not (false).
func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if isNil(object) {
return true
}
return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
}
var numericZeros = []interface{}{
int(0),
int8(0),
int16(0),
int32(0),
int64(0),
uint(0),
uint8(0),
uint16(0),
uint32(0),
uint64(0),
float32(0),
float64(0),
}
// isEmpty gets whether the specified object is considered empty or not.
func isEmpty(object interface{}) bool {
// get nil case out of the way
if object == nil {
return true
} else if object == "" {
return true
} else if object == false {
return true
}
for _, v := range numericZeros {
if object == v {
return true
}
}
objValue := reflect.ValueOf(object)
switch objValue.Kind() {
case reflect.Map:
fallthrough
case reflect.Slice, reflect.Chan:
{
return (objValue.Len() == 0)
}
case reflect.Struct:
switch object.(type) {
case time.Time:
return object.(time.Time).IsZero()
}
// collection types are empty when they have no element
case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
return objValue.Len() == 0
// pointers are empty if nil or if the value they point to is empty
case reflect.Ptr:
{
if objValue.IsNil() {
return true
}
switch object.(type) {
case *time.Time:
return object.(*time.Time).IsZero()
default:
return false
}
if objValue.IsNil() {
return true
}
deref := objValue.Elem().Interface()
return isEmpty(deref)
// for all other types, compare against the zero value
default:
zero := reflect.Zero(objValue.Type())
return reflect.DeepEqual(object, zero.Interface())
}
return false
}
// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
// a slice or a channel with len == 0.
//
// assert.Empty(t, obj)
//
// Returns whether the assertion was successful (true) or not (false).
func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
pass := isEmpty(object)
if !pass {
@ -499,9 +477,10 @@ func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
// if assert.NotEmpty(t, obj) {
// assert.Equal(t, "two", obj[1])
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
pass := !isEmpty(object)
if !pass {
@ -528,9 +507,10 @@ func getLen(x interface{}) (ok bool, length int) {
// Len also fails if the object has a type that len() not accept.
//
// assert.Len(t, mySlice, 3)
//
// Returns whether the assertion was successful (true) or not (false).
func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
ok, l := getLen(object)
if !ok {
return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
@ -545,9 +525,15 @@ func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{})
// True asserts that the specified value is true.
//
// assert.True(t, myBool)
//
// Returns whether the assertion was successful (true) or not (false).
func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if h, ok := t.(interface {
Helper()
}); ok {
h.Helper()
}
if value != true {
return Fail(t, "Should be true", msgAndArgs...)
@ -560,9 +546,10 @@ func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
// False asserts that the specified value is false.
//
// assert.False(t, myBool)
//
// Returns whether the assertion was successful (true) or not (false).
func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if value != false {
return Fail(t, "Should be false", msgAndArgs...)
@ -576,11 +563,12 @@ func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
//
// assert.NotEqual(t, obj1, obj2)
//
// Returns whether the assertion was successful (true) or not (false).
//
// Pointer variable equality is determined based on the equality of the
// referenced values (as opposed to the memory addresses).
func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if err := validateEqualArgs(expected, actual); err != nil {
return Fail(t, fmt.Sprintf("Invalid operation: %#v != %#v (%s)",
expected, actual, err), msgAndArgs...)
@ -638,9 +626,10 @@ func includeElement(list interface{}, element interface{}) (ok, found bool) {
// assert.Contains(t, "Hello World", "World")
// assert.Contains(t, ["Hello", "World"], "World")
// assert.Contains(t, {"Hello": "World"}, "Hello")
//
// Returns whether the assertion was successful (true) or not (false).
func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
ok, found := includeElement(s, contains)
if !ok {
@ -660,9 +649,10 @@ func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bo
// assert.NotContains(t, "Hello World", "Earth")
// assert.NotContains(t, ["Hello", "World"], "Earth")
// assert.NotContains(t, {"Hello": "World"}, "Earth")
//
// Returns whether the assertion was successful (true) or not (false).
func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
ok, found := includeElement(s, contains)
if !ok {
@ -680,9 +670,10 @@ func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{})
// elements given in the specified subset(array, slice...).
//
// assert.Subset(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
//
// Returns whether the assertion was successful (true) or not (false).
func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if subset == nil {
return true // we consider nil to be equal to the nil set
}
@ -723,11 +714,12 @@ func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok
// elements given in the specified subset(array, slice...).
//
// assert.NotSubset(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
//
// Returns whether the assertion was successful (true) or not (false).
func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if subset == nil {
return false // we consider nil to be equal to the nil set
return Fail(t, fmt.Sprintf("nil is the empty set which is a subset of every set"), msgAndArgs...)
}
subsetValue := reflect.ValueOf(subset)
@ -762,8 +754,68 @@ func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{})
return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...)
}
// ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
// the number of appearances of each of them in both lists should match.
//
// assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2])
func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if isEmpty(listA) && isEmpty(listB) {
return true
}
aKind := reflect.TypeOf(listA).Kind()
bKind := reflect.TypeOf(listB).Kind()
if aKind != reflect.Array && aKind != reflect.Slice {
return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listA, aKind), msgAndArgs...)
}
if bKind != reflect.Array && bKind != reflect.Slice {
return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listB, bKind), msgAndArgs...)
}
aValue := reflect.ValueOf(listA)
bValue := reflect.ValueOf(listB)
aLen := aValue.Len()
bLen := bValue.Len()
if aLen != bLen {
return Fail(t, fmt.Sprintf("lengths don't match: %d != %d", aLen, bLen), msgAndArgs...)
}
// Mark indexes in bValue that we already used
visited := make([]bool, bLen)
for i := 0; i < aLen; i++ {
element := aValue.Index(i).Interface()
found := false
for j := 0; j < bLen; j++ {
if visited[j] {
continue
}
if ObjectsAreEqual(bValue.Index(j).Interface(), element) {
visited[j] = true
found = true
break
}
}
if !found {
return Fail(t, fmt.Sprintf("element %s appears more times in %s than in %s", element, aValue, bValue), msgAndArgs...)
}
}
return true
}
// Condition uses a Comparison to assert a complex condition.
func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
result := comp()
if !result {
Fail(t, "Condition failed!", msgAndArgs...)
@ -800,12 +852,13 @@ func didPanic(f PanicTestFunc) (bool, interface{}) {
// Panics asserts that the code inside the specified PanicTestFunc panics.
//
// assert.Panics(t, func(){ GoCrazy() })
//
// Returns whether the assertion was successful (true) or not (false).
func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if funcDidPanic, panicValue := didPanic(f); !funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%v", f, panicValue), msgAndArgs...)
}
return true
@ -815,16 +868,17 @@ func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
// the recovered panic value equals the expected panic value.
//
// assert.PanicsWithValue(t, "crazy error", func(){ GoCrazy() })
//
// Returns whether the assertion was successful (true) or not (false).
func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
funcDidPanic, panicValue := didPanic(f)
if !funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%v", f, panicValue), msgAndArgs...)
}
if panicValue != expected {
return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%v\n\r\tPanic value:\t%v", f, expected, panicValue), msgAndArgs...)
return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%v\n\tPanic value:\t%v", f, expected, panicValue), msgAndArgs...)
}
return true
@ -833,12 +887,13 @@ func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndAr
// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
//
// assert.NotPanics(t, func(){ RemainCalm() })
//
// Returns whether the assertion was successful (true) or not (false).
func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if funcDidPanic, panicValue := didPanic(f); funcDidPanic {
return Fail(t, fmt.Sprintf("func %#v should not panic\n\r\tPanic value:\t%v", f, panicValue), msgAndArgs...)
return Fail(t, fmt.Sprintf("func %#v should not panic\n\tPanic value:\t%v", f, panicValue), msgAndArgs...)
}
return true
@ -847,9 +902,10 @@ func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
// WithinDuration asserts that the two times are within duration delta of each other.
//
// assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second)
//
// Returns whether the assertion was successful (true) or not (false).
func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
dt := expected.Sub(actual)
if dt < -delta || dt > delta {
@ -886,6 +942,8 @@ func toFloat(x interface{}) (float64, bool) {
xf = float64(xn)
case float64:
xf = float64(xn)
case time.Duration:
xf = float64(xn)
default:
xok = false
}
@ -896,9 +954,10 @@ func toFloat(x interface{}) (float64, bool) {
// InDelta asserts that the two numerals are within delta of each other.
//
// assert.InDelta(t, math.Pi, (22 / 7.0), 0.01)
//
// Returns whether the assertion was successful (true) or not (false).
func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
af, aok := toFloat(expected)
bf, bok := toFloat(actual)
@ -908,7 +967,7 @@ func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs
}
if math.IsNaN(af) {
return Fail(t, fmt.Sprintf("Actual must not be NaN"), msgAndArgs...)
return Fail(t, fmt.Sprintf("Expected must not be NaN"), msgAndArgs...)
}
if math.IsNaN(bf) {
@ -925,6 +984,9 @@ func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs
// InDeltaSlice is the same as InDelta, except it compares two slices.
func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
@ -944,6 +1006,50 @@ func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAn
return true
}
// InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
func InDeltaMapValues(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Map ||
reflect.TypeOf(expected).Kind() != reflect.Map {
return Fail(t, "Arguments must be maps", msgAndArgs...)
}
expectedMap := reflect.ValueOf(expected)
actualMap := reflect.ValueOf(actual)
if expectedMap.Len() != actualMap.Len() {
return Fail(t, "Arguments must have the same number of keys", msgAndArgs...)
}
for _, k := range expectedMap.MapKeys() {
ev := expectedMap.MapIndex(k)
av := actualMap.MapIndex(k)
if !ev.IsValid() {
return Fail(t, fmt.Sprintf("missing key %q in expected map", k), msgAndArgs...)
}
if !av.IsValid() {
return Fail(t, fmt.Sprintf("missing key %q in actual map", k), msgAndArgs...)
}
if !InDelta(
t,
ev.Interface(),
av.Interface(),
delta,
msgAndArgs...,
) {
return false
}
}
return true
}
func calcRelativeError(expected, actual interface{}) (float64, error) {
af, aok := toFloat(expected)
if !aok {
@ -954,23 +1060,24 @@ func calcRelativeError(expected, actual interface{}) (float64, error) {
}
bf, bok := toFloat(actual)
if !bok {
return 0, fmt.Errorf("expected value %q cannot be converted to float", actual)
return 0, fmt.Errorf("actual value %q cannot be converted to float", actual)
}
return math.Abs(af-bf) / math.Abs(af), nil
}
// InEpsilon asserts that expected and actual have a relative error less than epsilon
//
// Returns whether the assertion was successful (true) or not (false).
func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
actualEpsilon, err := calcRelativeError(expected, actual)
if err != nil {
return Fail(t, err.Error(), msgAndArgs...)
}
if actualEpsilon > epsilon {
return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+
" < %#v (actual)", actualEpsilon, epsilon), msgAndArgs...)
" < %#v (actual)", epsilon, actualEpsilon), msgAndArgs...)
}
return true
@ -978,6 +1085,9 @@ func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAnd
// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if expected == nil || actual == nil ||
reflect.TypeOf(actual).Kind() != reflect.Slice ||
reflect.TypeOf(expected).Kind() != reflect.Slice {
@ -1007,9 +1117,10 @@ func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, m
// if assert.NoError(t, err) {
// assert.Equal(t, expectedObj, actualObj)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if err != nil {
return Fail(t, fmt.Sprintf("Received unexpected error:\n%+v", err), msgAndArgs...)
}
@ -1023,9 +1134,10 @@ func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
// if assert.Error(t, err) {
// assert.Equal(t, expectedError, err)
// }
//
// Returns whether the assertion was successful (true) or not (false).
func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if err == nil {
return Fail(t, "An error is expected but got nil.", msgAndArgs...)
@ -1039,9 +1151,10 @@ func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
//
// actualObj, err := SomeFunction()
// assert.EqualError(t, err, expectedErrorString)
//
// Returns whether the assertion was successful (true) or not (false).
func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if !Error(t, theError, msgAndArgs...) {
return false
}
@ -1051,7 +1164,7 @@ func EqualError(t TestingT, theError error, errString string, msgAndArgs ...inte
if expected != actual {
return Fail(t, fmt.Sprintf("Error message not equal:\n"+
"expected: %q\n"+
"actual: %q", expected, actual), msgAndArgs...)
"actual : %q", expected, actual), msgAndArgs...)
}
return true
}
@ -1074,9 +1187,10 @@ func matchRegexp(rx interface{}, str interface{}) bool {
//
// assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
// assert.Regexp(t, "start...$", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
match := matchRegexp(rx, str)
@ -1091,9 +1205,10 @@ func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface
//
// assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
// assert.NotRegexp(t, "^start", "it's not starting")
//
// Returns whether the assertion was successful (true) or not (false).
func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
match := matchRegexp(rx, str)
if match {
@ -1104,28 +1219,71 @@ func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interf
}
// Zero asserts that i is the zero value for its type and returns the truth.
// Zero asserts that i is the zero value for its type.
func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
}
return true
}
// NotZero asserts that i is not the zero value for its type and returns the truth.
// NotZero asserts that i is not the zero value for its type.
func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
}
return true
}
// FileExists checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
func FileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
info, err := os.Lstat(path)
if err != nil {
if os.IsNotExist(err) {
return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
}
return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
}
if info.IsDir() {
return Fail(t, fmt.Sprintf("%q is a directory", path), msgAndArgs...)
}
return true
}
// DirExists checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
func DirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
info, err := os.Lstat(path)
if err != nil {
if os.IsNotExist(err) {
return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
}
return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
}
if !info.IsDir() {
return Fail(t, fmt.Sprintf("%q is a file", path), msgAndArgs...)
}
return true
}
// JSONEq asserts that two JSON strings are equivalent.
//
// assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
//
// Returns whether the assertion was successful (true) or not (false).
func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
var expectedJSONAsInterface, actualJSONAsInterface interface{}
if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
@ -1206,3 +1364,7 @@ var spewConfig = spew.ConfigState{
DisableCapacities: true,
SortKeys: true,
}
type tHelper interface {
Helper()
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,611 @@
package assert
import (
"errors"
"regexp"
"testing"
"time"
)
func TestImplementsWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.Implements((*AssertionTesterInterface)(nil), new(AssertionTesterConformingObject)) {
t.Error("Implements method should return true: AssertionTesterConformingObject implements AssertionTesterInterface")
}
if assert.Implements((*AssertionTesterInterface)(nil), new(AssertionTesterNonConformingObject)) {
t.Error("Implements method should return false: AssertionTesterNonConformingObject does not implements AssertionTesterInterface")
}
}
func TestIsTypeWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.IsType(new(AssertionTesterConformingObject), new(AssertionTesterConformingObject)) {
t.Error("IsType should return true: AssertionTesterConformingObject is the same type as AssertionTesterConformingObject")
}
if assert.IsType(new(AssertionTesterConformingObject), new(AssertionTesterNonConformingObject)) {
t.Error("IsType should return false: AssertionTesterConformingObject is not the same type as AssertionTesterNonConformingObject")
}
}
func TestEqualWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.Equal("Hello World", "Hello World") {
t.Error("Equal should return true")
}
if !assert.Equal(123, 123) {
t.Error("Equal should return true")
}
if !assert.Equal(123.5, 123.5) {
t.Error("Equal should return true")
}
if !assert.Equal([]byte("Hello World"), []byte("Hello World")) {
t.Error("Equal should return true")
}
if !assert.Equal(nil, nil) {
t.Error("Equal should return true")
}
}
func TestEqualValuesWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.EqualValues(uint32(10), int32(10)) {
t.Error("EqualValues should return true")
}
}
func TestNotNilWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.NotNil(new(AssertionTesterConformingObject)) {
t.Error("NotNil should return true: object is not nil")
}
if assert.NotNil(nil) {
t.Error("NotNil should return false: object is nil")
}
}
func TestNilWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.Nil(nil) {
t.Error("Nil should return true: object is nil")
}
if assert.Nil(new(AssertionTesterConformingObject)) {
t.Error("Nil should return false: object is not nil")
}
}
func TestTrueWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.True(true) {
t.Error("True should return true")
}
if assert.True(false) {
t.Error("True should return false")
}
}
func TestFalseWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.False(false) {
t.Error("False should return true")
}
if assert.False(true) {
t.Error("False should return false")
}
}
func TestExactlyWrapper(t *testing.T) {
assert := New(new(testing.T))
a := float32(1)
b := float64(1)
c := float32(1)
d := float32(2)
if assert.Exactly(a, b) {
t.Error("Exactly should return false")
}
if assert.Exactly(a, d) {
t.Error("Exactly should return false")
}
if !assert.Exactly(a, c) {
t.Error("Exactly should return true")
}
if assert.Exactly(nil, a) {
t.Error("Exactly should return false")
}
if assert.Exactly(a, nil) {
t.Error("Exactly should return false")
}
}
func TestNotEqualWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.NotEqual("Hello World", "Hello World!") {
t.Error("NotEqual should return true")
}
if !assert.NotEqual(123, 1234) {
t.Error("NotEqual should return true")
}
if !assert.NotEqual(123.5, 123.55) {
t.Error("NotEqual should return true")
}
if !assert.NotEqual([]byte("Hello World"), []byte("Hello World!")) {
t.Error("NotEqual should return true")
}
if !assert.NotEqual(nil, new(AssertionTesterConformingObject)) {
t.Error("NotEqual should return true")
}
}
func TestContainsWrapper(t *testing.T) {
assert := New(new(testing.T))
list := []string{"Foo", "Bar"}
if !assert.Contains("Hello World", "Hello") {
t.Error("Contains should return true: \"Hello World\" contains \"Hello\"")
}
if assert.Contains("Hello World", "Salut") {
t.Error("Contains should return false: \"Hello World\" does not contain \"Salut\"")
}
if !assert.Contains(list, "Foo") {
t.Error("Contains should return true: \"[\"Foo\", \"Bar\"]\" contains \"Foo\"")
}
if assert.Contains(list, "Salut") {
t.Error("Contains should return false: \"[\"Foo\", \"Bar\"]\" does not contain \"Salut\"")
}
}
func TestNotContainsWrapper(t *testing.T) {
assert := New(new(testing.T))
list := []string{"Foo", "Bar"}
if !assert.NotContains("Hello World", "Hello!") {
t.Error("NotContains should return true: \"Hello World\" does not contain \"Hello!\"")
}
if assert.NotContains("Hello World", "Hello") {
t.Error("NotContains should return false: \"Hello World\" contains \"Hello\"")
}
if !assert.NotContains(list, "Foo!") {
t.Error("NotContains should return true: \"[\"Foo\", \"Bar\"]\" does not contain \"Foo!\"")
}
if assert.NotContains(list, "Foo") {
t.Error("NotContains should return false: \"[\"Foo\", \"Bar\"]\" contains \"Foo\"")
}
}
func TestConditionWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.Condition(func() bool { return true }, "Truth") {
t.Error("Condition should return true")
}
if assert.Condition(func() bool { return false }, "Lie") {
t.Error("Condition should return false")
}
}
func TestDidPanicWrapper(t *testing.T) {
if funcDidPanic, _ := didPanic(func() {
panic("Panic!")
}); !funcDidPanic {
t.Error("didPanic should return true")
}
if funcDidPanic, _ := didPanic(func() {
}); funcDidPanic {
t.Error("didPanic should return false")
}
}
func TestPanicsWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.Panics(func() {
panic("Panic!")
}) {
t.Error("Panics should return true")
}
if assert.Panics(func() {
}) {
t.Error("Panics should return false")
}
}
func TestNotPanicsWrapper(t *testing.T) {
assert := New(new(testing.T))
if !assert.NotPanics(func() {
}) {
t.Error("NotPanics should return true")
}
if assert.NotPanics(func() {
panic("Panic!")
}) {
t.Error("NotPanics should return false")
}
}
func TestNoErrorWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
// start with a nil error
var err error
assert.True(mockAssert.NoError(err), "NoError should return True for nil arg")
// now set an error
err = errors.New("Some error")
assert.False(mockAssert.NoError(err), "NoError with error should return False")
}
func TestErrorWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
// start with a nil error
var err error
assert.False(mockAssert.Error(err), "Error should return False for nil arg")
// now set an error
err = errors.New("Some error")
assert.True(mockAssert.Error(err), "Error with error should return True")
}
func TestEqualErrorWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
// start with a nil error
var err error
assert.False(mockAssert.EqualError(err, ""),
"EqualError should return false for nil arg")
// now set an error
err = errors.New("some error")
assert.False(mockAssert.EqualError(err, "Not some error"),
"EqualError should return false for different error string")
assert.True(mockAssert.EqualError(err, "some error"),
"EqualError should return true")
}
func TestEmptyWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
assert.True(mockAssert.Empty(""), "Empty string is empty")
assert.True(mockAssert.Empty(nil), "Nil is empty")
assert.True(mockAssert.Empty([]string{}), "Empty string array is empty")
assert.True(mockAssert.Empty(0), "Zero int value is empty")
assert.True(mockAssert.Empty(false), "False value is empty")
assert.False(mockAssert.Empty("something"), "Non Empty string is not empty")
assert.False(mockAssert.Empty(errors.New("something")), "Non nil object is not empty")
assert.False(mockAssert.Empty([]string{"something"}), "Non empty string array is not empty")
assert.False(mockAssert.Empty(1), "Non-zero int value is not empty")
assert.False(mockAssert.Empty(true), "True value is not empty")
}
func TestNotEmptyWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
assert.False(mockAssert.NotEmpty(""), "Empty string is empty")
assert.False(mockAssert.NotEmpty(nil), "Nil is empty")
assert.False(mockAssert.NotEmpty([]string{}), "Empty string array is empty")
assert.False(mockAssert.NotEmpty(0), "Zero int value is empty")
assert.False(mockAssert.NotEmpty(false), "False value is empty")
assert.True(mockAssert.NotEmpty("something"), "Non Empty string is not empty")
assert.True(mockAssert.NotEmpty(errors.New("something")), "Non nil object is not empty")
assert.True(mockAssert.NotEmpty([]string{"something"}), "Non empty string array is not empty")
assert.True(mockAssert.NotEmpty(1), "Non-zero int value is not empty")
assert.True(mockAssert.NotEmpty(true), "True value is not empty")
}
func TestLenWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
assert.False(mockAssert.Len(nil, 0), "nil does not have length")
assert.False(mockAssert.Len(0, 0), "int does not have length")
assert.False(mockAssert.Len(true, 0), "true does not have length")
assert.False(mockAssert.Len(false, 0), "false does not have length")
assert.False(mockAssert.Len('A', 0), "Rune does not have length")
assert.False(mockAssert.Len(struct{}{}, 0), "Struct does not have length")
ch := make(chan int, 5)
ch <- 1
ch <- 2
ch <- 3
cases := []struct {
v interface{}
l int
}{
{[]int{1, 2, 3}, 3},
{[...]int{1, 2, 3}, 3},
{"ABC", 3},
{map[int]int{1: 2, 2: 4, 3: 6}, 3},
{ch, 3},
{[]int{}, 0},
{map[int]int{}, 0},
{make(chan int), 0},
{[]int(nil), 0},
{map[int]int(nil), 0},
{(chan int)(nil), 0},
}
for _, c := range cases {
assert.True(mockAssert.Len(c.v, c.l), "%#v have %d items", c.v, c.l)
}
}
func TestWithinDurationWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
a := time.Now()
b := a.Add(10 * time.Second)
assert.True(mockAssert.WithinDuration(a, b, 10*time.Second), "A 10s difference is within a 10s time difference")
assert.True(mockAssert.WithinDuration(b, a, 10*time.Second), "A 10s difference is within a 10s time difference")
assert.False(mockAssert.WithinDuration(a, b, 9*time.Second), "A 10s difference is not within a 9s time difference")
assert.False(mockAssert.WithinDuration(b, a, 9*time.Second), "A 10s difference is not within a 9s time difference")
assert.False(mockAssert.WithinDuration(a, b, -9*time.Second), "A 10s difference is not within a 9s time difference")
assert.False(mockAssert.WithinDuration(b, a, -9*time.Second), "A 10s difference is not within a 9s time difference")
assert.False(mockAssert.WithinDuration(a, b, -11*time.Second), "A 10s difference is not within a 9s time difference")
assert.False(mockAssert.WithinDuration(b, a, -11*time.Second), "A 10s difference is not within a 9s time difference")
}
func TestInDeltaWrapper(t *testing.T) {
assert := New(new(testing.T))
True(t, assert.InDelta(1.001, 1, 0.01), "|1.001 - 1| <= 0.01")
True(t, assert.InDelta(1, 1.001, 0.01), "|1 - 1.001| <= 0.01")
True(t, assert.InDelta(1, 2, 1), "|1 - 2| <= 1")
False(t, assert.InDelta(1, 2, 0.5), "Expected |1 - 2| <= 0.5 to fail")
False(t, assert.InDelta(2, 1, 0.5), "Expected |2 - 1| <= 0.5 to fail")
False(t, assert.InDelta("", nil, 1), "Expected non numerals to fail")
cases := []struct {
a, b interface{}
delta float64
}{
{uint8(2), uint8(1), 1},
{uint16(2), uint16(1), 1},
{uint32(2), uint32(1), 1},
{uint64(2), uint64(1), 1},
{int(2), int(1), 1},
{int8(2), int8(1), 1},
{int16(2), int16(1), 1},
{int32(2), int32(1), 1},
{int64(2), int64(1), 1},
{float32(2), float32(1), 1},
{float64(2), float64(1), 1},
}
for _, tc := range cases {
True(t, assert.InDelta(tc.a, tc.b, tc.delta), "Expected |%V - %V| <= %v", tc.a, tc.b, tc.delta)
}
}
func TestInEpsilonWrapper(t *testing.T) {
assert := New(new(testing.T))
cases := []struct {
a, b interface{}
epsilon float64
}{
{uint8(2), uint16(2), .001},
{2.1, 2.2, 0.1},
{2.2, 2.1, 0.1},
{-2.1, -2.2, 0.1},
{-2.2, -2.1, 0.1},
{uint64(100), uint8(101), 0.01},
{0.1, -0.1, 2},
}
for _, tc := range cases {
True(t, assert.InEpsilon(tc.a, tc.b, tc.epsilon, "Expected %V and %V to have a relative difference of %v", tc.a, tc.b, tc.epsilon))
}
cases = []struct {
a, b interface{}
epsilon float64
}{
{uint8(2), int16(-2), .001},
{uint64(100), uint8(102), 0.01},
{2.1, 2.2, 0.001},
{2.2, 2.1, 0.001},
{2.1, -2.2, 1},
{2.1, "bla-bla", 0},
{0.1, -0.1, 1.99},
}
for _, tc := range cases {
False(t, assert.InEpsilon(tc.a, tc.b, tc.epsilon, "Expected %V and %V to have a relative difference of %v", tc.a, tc.b, tc.epsilon))
}
}
func TestRegexpWrapper(t *testing.T) {
assert := New(new(testing.T))
cases := []struct {
rx, str string
}{
{"^start", "start of the line"},
{"end$", "in the end"},
{"[0-9]{3}[.-]?[0-9]{2}[.-]?[0-9]{2}", "My phone number is 650.12.34"},
}
for _, tc := range cases {
True(t, assert.Regexp(tc.rx, tc.str))
True(t, assert.Regexp(regexp.MustCompile(tc.rx), tc.str))
False(t, assert.NotRegexp(tc.rx, tc.str))
False(t, assert.NotRegexp(regexp.MustCompile(tc.rx), tc.str))
}
cases = []struct {
rx, str string
}{
{"^asdfastart", "Not the start of the line"},
{"end$", "in the end."},
{"[0-9]{3}[.-]?[0-9]{2}[.-]?[0-9]{2}", "My phone number is 650.12a.34"},
}
for _, tc := range cases {
False(t, assert.Regexp(tc.rx, tc.str), "Expected \"%s\" to not match \"%s\"", tc.rx, tc.str)
False(t, assert.Regexp(regexp.MustCompile(tc.rx), tc.str))
True(t, assert.NotRegexp(tc.rx, tc.str))
True(t, assert.NotRegexp(regexp.MustCompile(tc.rx), tc.str))
}
}
func TestZeroWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
for _, test := range zeros {
assert.True(mockAssert.Zero(test), "Zero should return true for %v", test)
}
for _, test := range nonZeros {
assert.False(mockAssert.Zero(test), "Zero should return false for %v", test)
}
}
func TestNotZeroWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
for _, test := range zeros {
assert.False(mockAssert.NotZero(test), "Zero should return true for %v", test)
}
for _, test := range nonZeros {
assert.True(mockAssert.NotZero(test), "Zero should return false for %v", test)
}
}
func TestJSONEqWrapper_EqualSONString(t *testing.T) {
assert := New(new(testing.T))
if !assert.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"hello": "world", "foo": "bar"}`) {
t.Error("JSONEq should return true")
}
}
func TestJSONEqWrapper_EquivalentButNotEqual(t *testing.T) {
assert := New(new(testing.T))
if !assert.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`) {
t.Error("JSONEq should return true")
}
}
func TestJSONEqWrapper_HashOfArraysAndHashes(t *testing.T) {
assert := New(new(testing.T))
if !assert.JSONEq("{\r\n\t\"numeric\": 1.5,\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]],\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\"\r\n}",
"{\r\n\t\"numeric\": 1.5,\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\",\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]]\r\n}") {
t.Error("JSONEq should return true")
}
}
func TestJSONEqWrapper_Array(t *testing.T) {
assert := New(new(testing.T))
if !assert.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `["foo", {"nested": "hash", "hello": "world"}]`) {
t.Error("JSONEq should return true")
}
}
func TestJSONEqWrapper_HashAndArrayNotEquivalent(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `{"foo": "bar", {"nested": "hash", "hello": "world"}}`) {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_HashesNotEquivalent(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq(`{"foo": "bar"}`, `{"foo": "bar", "hello": "world"}`) {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_ActualIsNotJSON(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq(`{"foo": "bar"}`, "Not JSON") {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_ExpectedIsNotJSON(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq("Not JSON", `{"foo": "bar", "hello": "world"}`) {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_ExpectedAndActualNotJSON(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq("Not JSON", "Not JSON") {
t.Error("JSONEq should return false")
}
}
func TestJSONEqWrapper_ArraysOfDifferentOrder(t *testing.T) {
assert := New(new(testing.T))
if assert.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `[{ "hello": "world", "nested": "hash"}, "foo"]`) {
t.Error("JSONEq should return false")
}
}

View file

@ -25,7 +25,10 @@ func httpCode(handler http.HandlerFunc, method, url string, values url.Values) (
// assert.HTTPSuccess(t, myHandler, "POST", "http://www.google.com", nil)
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
code, err := httpCode(handler, method, url, values)
if err != nil {
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
@ -45,7 +48,10 @@ func HTTPSuccess(t TestingT, handler http.HandlerFunc, method, url string, value
// assert.HTTPRedirect(t, myHandler, "GET", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
code, err := httpCode(handler, method, url, values)
if err != nil {
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
@ -65,7 +71,10 @@ func HTTPRedirect(t TestingT, handler http.HandlerFunc, method, url string, valu
// assert.HTTPError(t, myHandler, "POST", "/a/b/c", url.Values{"a": []string{"b", "c"}}
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPError(t TestingT, handler http.HandlerFunc, method, url string, values url.Values) bool {
func HTTPError(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
code, err := httpCode(handler, method, url, values)
if err != nil {
Fail(t, fmt.Sprintf("Failed to build test request, got error: %s", err))
@ -98,7 +107,10 @@ func HTTPBody(handler http.HandlerFunc, method, url string, values url.Values) s
// assert.HTTPBodyContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool {
func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
body := HTTPBody(handler, method, url, values)
contains := strings.Contains(body, fmt.Sprint(str))
@ -115,7 +127,10 @@ func HTTPBodyContains(t TestingT, handler http.HandlerFunc, method, url string,
// assert.HTTPBodyNotContains(t, myHandler, "www.google.com", nil, "I'm Feeling Lucky")
//
// Returns whether the assertion was successful (true) or not (false).
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}) bool {
func HTTPBodyNotContains(t TestingT, handler http.HandlerFunc, method, url string, values url.Values, str interface{}, msgAndArgs ...interface{}) bool {
if h, ok := t.(tHelper); ok {
h.Helper()
}
body := HTTPBody(handler, method, url, values)
contains := strings.Contains(body, fmt.Sprint(str))

View file

@ -0,0 +1,117 @@
package assert
import (
"fmt"
"net/http"
"net/url"
"testing"
)
func httpOK(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusOK)
}
func httpRedirect(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusTemporaryRedirect)
}
func httpError(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusInternalServerError)
}
func TestHTTPSuccess(t *testing.T) {
assert := New(t)
mockT1 := new(testing.T)
assert.Equal(HTTPSuccess(mockT1, httpOK, "GET", "/", nil), true)
assert.False(mockT1.Failed())
mockT2 := new(testing.T)
assert.Equal(HTTPSuccess(mockT2, httpRedirect, "GET", "/", nil), false)
assert.True(mockT2.Failed())
mockT3 := new(testing.T)
assert.Equal(HTTPSuccess(mockT3, httpError, "GET", "/", nil), false)
assert.True(mockT3.Failed())
}
func TestHTTPRedirect(t *testing.T) {
assert := New(t)
mockT1 := new(testing.T)
assert.Equal(HTTPRedirect(mockT1, httpOK, "GET", "/", nil), false)
assert.True(mockT1.Failed())
mockT2 := new(testing.T)
assert.Equal(HTTPRedirect(mockT2, httpRedirect, "GET", "/", nil), true)
assert.False(mockT2.Failed())
mockT3 := new(testing.T)
assert.Equal(HTTPRedirect(mockT3, httpError, "GET", "/", nil), false)
assert.True(mockT3.Failed())
}
func TestHTTPError(t *testing.T) {
assert := New(t)
mockT1 := new(testing.T)
assert.Equal(HTTPError(mockT1, httpOK, "GET", "/", nil), false)
assert.True(mockT1.Failed())
mockT2 := new(testing.T)
assert.Equal(HTTPError(mockT2, httpRedirect, "GET", "/", nil), false)
assert.True(mockT2.Failed())
mockT3 := new(testing.T)
assert.Equal(HTTPError(mockT3, httpError, "GET", "/", nil), true)
assert.False(mockT3.Failed())
}
func TestHTTPStatusesWrapper(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
assert.Equal(mockAssert.HTTPSuccess(httpOK, "GET", "/", nil), true)
assert.Equal(mockAssert.HTTPSuccess(httpRedirect, "GET", "/", nil), false)
assert.Equal(mockAssert.HTTPSuccess(httpError, "GET", "/", nil), false)
assert.Equal(mockAssert.HTTPRedirect(httpOK, "GET", "/", nil), false)
assert.Equal(mockAssert.HTTPRedirect(httpRedirect, "GET", "/", nil), true)
assert.Equal(mockAssert.HTTPRedirect(httpError, "GET", "/", nil), false)
assert.Equal(mockAssert.HTTPError(httpOK, "GET", "/", nil), false)
assert.Equal(mockAssert.HTTPError(httpRedirect, "GET", "/", nil), false)
assert.Equal(mockAssert.HTTPError(httpError, "GET", "/", nil), true)
}
func httpHelloName(w http.ResponseWriter, r *http.Request) {
name := r.FormValue("name")
w.Write([]byte(fmt.Sprintf("Hello, %s!", name)))
}
func TestHttpBody(t *testing.T) {
assert := New(t)
mockT := new(testing.T)
assert.True(HTTPBodyContains(mockT, httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "Hello, World!"))
assert.True(HTTPBodyContains(mockT, httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "World"))
assert.False(HTTPBodyContains(mockT, httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "world"))
assert.False(HTTPBodyNotContains(mockT, httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "Hello, World!"))
assert.False(HTTPBodyNotContains(mockT, httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "World"))
assert.True(HTTPBodyNotContains(mockT, httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "world"))
}
func TestHttpBodyWrappers(t *testing.T) {
assert := New(t)
mockAssert := New(new(testing.T))
assert.True(mockAssert.HTTPBodyContains(httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "Hello, World!"))
assert.True(mockAssert.HTTPBodyContains(httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "World"))
assert.False(mockAssert.HTTPBodyContains(httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "world"))
assert.False(mockAssert.HTTPBodyNotContains(httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "Hello, World!"))
assert.False(mockAssert.HTTPBodyNotContains(httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "World"))
assert.True(mockAssert.HTTPBodyNotContains(httpHelloName, "GET", "/", url.Values{"name": []string{"World"}}, "world"))
}

22
deps/github.com/stretchr/testify/doc.go vendored Normal file
View file

@ -0,0 +1,22 @@
// Package testify is a set of packages that provide many tools for testifying that your code will behave as you intend.
//
// testify contains the following packages:
//
// The assert package provides a comprehensive set of assertion functions that tie in to the Go testing system.
//
// The http package contains tools to make it easier to test http activity using the Go testing system.
//
// The mock package provides a system by which it is possible to mock your objects and verify calls are happening as expected.
//
// The suite package provides a basic structure for using structs as testing suites, and methods on those structs as tests. It includes setup/teardown functionality in the way of interfaces.
package testify
// blank imports help docs.
import (
// assert package
_ "github.com/stretchr/testify/assert"
// http package
_ "github.com/stretchr/testify/http"
// mock package
_ "github.com/stretchr/testify/mock"
)

View file

@ -0,0 +1,2 @@
// Package http DEPRECATED USE net/http/httptest
package http

View file

@ -0,0 +1,49 @@
package http
import (
"net/http"
)
// TestResponseWriter DEPRECATED: We recommend you use http://golang.org/pkg/net/http/httptest instead.
type TestResponseWriter struct {
// StatusCode is the last int written by the call to WriteHeader(int)
StatusCode int
// Output is a string containing the written bytes using the Write([]byte) func.
Output string
// header is the internal storage of the http.Header object
header http.Header
}
// Header DEPRECATED: We recommend you use http://golang.org/pkg/net/http/httptest instead.
func (rw *TestResponseWriter) Header() http.Header {
if rw.header == nil {
rw.header = make(http.Header)
}
return rw.header
}
// Write DEPRECATED: We recommend you use http://golang.org/pkg/net/http/httptest instead.
func (rw *TestResponseWriter) Write(bytes []byte) (int, error) {
// assume 200 success if no header has been set
if rw.StatusCode == 0 {
rw.WriteHeader(200)
}
// add these bytes to the output string
rw.Output = rw.Output + string(bytes)
// return normal values
return 0, nil
}
// WriteHeader DEPRECATED: We recommend you use http://golang.org/pkg/net/http/httptest instead.
func (rw *TestResponseWriter) WriteHeader(i int) {
rw.StatusCode = i
}

View file

@ -0,0 +1,17 @@
package http
import (
"github.com/stretchr/testify/mock"
"net/http"
)
// TestRoundTripper DEPRECATED USE net/http/httptest
type TestRoundTripper struct {
mock.Mock
}
// RoundTrip DEPRECATED USE net/http/httptest
func (t *TestRoundTripper) RoundTrip(req *http.Request) (*http.Response, error) {
args := t.Called(req)
return args.Get(0).(*http.Response), args.Error(1)
}

View file

@ -0,0 +1,44 @@
// Package mock provides a system by which it is possible to mock your objects
// and verify calls are happening as expected.
//
// Example Usage
//
// The mock package provides an object, Mock, that tracks activity on another object. It is usually
// embedded into a test object as shown below:
//
// type MyTestObject struct {
// // add a Mock object instance
// mock.Mock
//
// // other fields go here as normal
// }
//
// When implementing the methods of an interface, you wire your functions up
// to call the Mock.Called(args...) method, and return the appropriate values.
//
// For example, to mock a method that saves the name and age of a person and returns
// the year of their birth or an error, you might write this:
//
// func (o *MyTestObject) SavePersonDetails(firstname, lastname string, age int) (int, error) {
// args := o.Called(firstname, lastname, age)
// return args.Int(0), args.Error(1)
// }
//
// The Int, Error and Bool methods are examples of strongly typed getters that take the argument
// index position. Given this argument list:
//
// (12, true, "Something")
//
// You could read them out strongly typed like this:
//
// args.Int(0)
// args.Bool(1)
// args.String(2)
//
// For objects of your own type, use the generic Arguments.Get(index) method and make a type assertion:
//
// return args.Get(0).(*MyObject), args.Get(1).(*AnotherObjectOfMine)
//
// This may cause a panic if the object you are getting is nil (the type assertion will fail), in those
// cases you should check for nil first.
package mock

View file

@ -0,0 +1,820 @@
package mock
import (
"errors"
"fmt"
"reflect"
"regexp"
"runtime"
"strings"
"sync"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/pmezard/go-difflib/difflib"
"github.com/stretchr/objx"
"github.com/stretchr/testify/assert"
)
// TestingT is an interface wrapper around *testing.T
type TestingT interface {
Logf(format string, args ...interface{})
Errorf(format string, args ...interface{})
FailNow()
}
/*
Call
*/
// Call represents a method call and is used for setting expectations,
// as well as recording activity.
type Call struct {
Parent *Mock
// The name of the method that was or will be called.
Method string
// Holds the arguments of the method.
Arguments Arguments
// Holds the arguments that should be returned when
// this method is called.
ReturnArguments Arguments
// Holds the caller info for the On() call
callerInfo []string
// The number of times to return the return arguments when setting
// expectations. 0 means to always return the value.
Repeatability int
// Amount of times this call has been called
totalCalls int
// Call to this method can be optional
optional bool
// Holds a channel that will be used to block the Return until it either
// receives a message or is closed. nil means it returns immediately.
WaitFor <-chan time.Time
waitTime time.Duration
// Holds a handler used to manipulate arguments content that are passed by
// reference. It's useful when mocking methods such as unmarshalers or
// decoders.
RunFn func(Arguments)
}
func newCall(parent *Mock, methodName string, callerInfo []string, methodArguments ...interface{}) *Call {
return &Call{
Parent: parent,
Method: methodName,
Arguments: methodArguments,
ReturnArguments: make([]interface{}, 0),
callerInfo: callerInfo,
Repeatability: 0,
WaitFor: nil,
RunFn: nil,
}
}
func (c *Call) lock() {
c.Parent.mutex.Lock()
}
func (c *Call) unlock() {
c.Parent.mutex.Unlock()
}
// Return specifies the return arguments for the expectation.
//
// Mock.On("DoSomething").Return(errors.New("failed"))
func (c *Call) Return(returnArguments ...interface{}) *Call {
c.lock()
defer c.unlock()
c.ReturnArguments = returnArguments
return c
}
// Once indicates that that the mock should only return the value once.
//
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Once()
func (c *Call) Once() *Call {
return c.Times(1)
}
// Twice indicates that that the mock should only return the value twice.
//
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Twice()
func (c *Call) Twice() *Call {
return c.Times(2)
}
// Times indicates that that the mock should only return the indicated number
// of times.
//
// Mock.On("MyMethod", arg1, arg2).Return(returnArg1, returnArg2).Times(5)
func (c *Call) Times(i int) *Call {
c.lock()
defer c.unlock()
c.Repeatability = i
return c
}
// WaitUntil sets the channel that will block the mock's return until its closed
// or a message is received.
//
// Mock.On("MyMethod", arg1, arg2).WaitUntil(time.After(time.Second))
func (c *Call) WaitUntil(w <-chan time.Time) *Call {
c.lock()
defer c.unlock()
c.WaitFor = w
return c
}
// After sets how long to block until the call returns
//
// Mock.On("MyMethod", arg1, arg2).After(time.Second)
func (c *Call) After(d time.Duration) *Call {
c.lock()
defer c.unlock()
c.waitTime = d
return c
}
// Run sets a handler to be called before returning. It can be used when
// mocking a method such as unmarshalers that takes a pointer to a struct and
// sets properties in such struct
//
// Mock.On("Unmarshal", AnythingOfType("*map[string]interface{}").Return().Run(func(args Arguments) {
// arg := args.Get(0).(*map[string]interface{})
// arg["foo"] = "bar"
// })
func (c *Call) Run(fn func(args Arguments)) *Call {
c.lock()
defer c.unlock()
c.RunFn = fn
return c
}
// Maybe allows the method call to be optional. Not calling an optional method
// will not cause an error while asserting expectations
func (c *Call) Maybe() *Call {
c.lock()
defer c.unlock()
c.optional = true
return c
}
// On chains a new expectation description onto the mocked interface. This
// allows syntax like.
//
// Mock.
// On("MyMethod", 1).Return(nil).
// On("MyOtherMethod", 'a', 'b', 'c').Return(errors.New("Some Error"))
func (c *Call) On(methodName string, arguments ...interface{}) *Call {
return c.Parent.On(methodName, arguments...)
}
// Mock is the workhorse used to track activity on another object.
// For an example of its usage, refer to the "Example Usage" section at the top
// of this document.
type Mock struct {
// Represents the calls that are expected of
// an object.
ExpectedCalls []*Call
// Holds the calls that were made to this mocked object.
Calls []Call
// TestData holds any data that might be useful for testing. Testify ignores
// this data completely allowing you to do whatever you like with it.
testData objx.Map
mutex sync.Mutex
}
// TestData holds any data that might be useful for testing. Testify ignores
// this data completely allowing you to do whatever you like with it.
func (m *Mock) TestData() objx.Map {
if m.testData == nil {
m.testData = make(objx.Map)
}
return m.testData
}
/*
Setting expectations
*/
// On starts a description of an expectation of the specified method
// being called.
//
// Mock.On("MyMethod", arg1, arg2)
func (m *Mock) On(methodName string, arguments ...interface{}) *Call {
for _, arg := range arguments {
if v := reflect.ValueOf(arg); v.Kind() == reflect.Func {
panic(fmt.Sprintf("cannot use Func in expectations. Use mock.AnythingOfType(\"%T\")", arg))
}
}
m.mutex.Lock()
defer m.mutex.Unlock()
c := newCall(m, methodName, assert.CallerInfo(), arguments...)
m.ExpectedCalls = append(m.ExpectedCalls, c)
return c
}
// /*
// Recording and responding to activity
// */
func (m *Mock) findExpectedCall(method string, arguments ...interface{}) (int, *Call) {
for i, call := range m.ExpectedCalls {
if call.Method == method && call.Repeatability > -1 {
_, diffCount := call.Arguments.Diff(arguments)
if diffCount == 0 {
return i, call
}
}
}
return -1, nil
}
func (m *Mock) findClosestCall(method string, arguments ...interface{}) (bool, *Call) {
diffCount := 0
var closestCall *Call
for _, call := range m.expectedCalls() {
if call.Method == method {
_, tempDiffCount := call.Arguments.Diff(arguments)
if tempDiffCount < diffCount || diffCount == 0 {
diffCount = tempDiffCount
closestCall = call
}
}
}
if closestCall == nil {
return false, nil
}
return true, closestCall
}
func callString(method string, arguments Arguments, includeArgumentValues bool) string {
var argValsString string
if includeArgumentValues {
var argVals []string
for argIndex, arg := range arguments {
argVals = append(argVals, fmt.Sprintf("%d: %#v", argIndex, arg))
}
argValsString = fmt.Sprintf("\n\t\t%s", strings.Join(argVals, "\n\t\t"))
}
return fmt.Sprintf("%s(%s)%s", method, arguments.String(), argValsString)
}
// Called tells the mock object that a method has been called, and gets an array
// of arguments to return. Panics if the call is unexpected (i.e. not preceded by
// appropriate .On .Return() calls)
// If Call.WaitFor is set, blocks until the channel is closed or receives a message.
func (m *Mock) Called(arguments ...interface{}) Arguments {
// get the calling function's name
pc, _, _, ok := runtime.Caller(1)
if !ok {
panic("Couldn't get the caller information")
}
functionPath := runtime.FuncForPC(pc).Name()
//Next four lines are required to use GCCGO function naming conventions.
//For Ex: github_com_docker_libkv_store_mock.WatchTree.pN39_github_com_docker_libkv_store_mock.Mock
//uses interface information unlike golang github.com/docker/libkv/store/mock.(*Mock).WatchTree
//With GCCGO we need to remove interface information starting from pN<dd>.
re := regexp.MustCompile("\\.pN\\d+_")
if re.MatchString(functionPath) {
functionPath = re.Split(functionPath, -1)[0]
}
parts := strings.Split(functionPath, ".")
functionName := parts[len(parts)-1]
return m.MethodCalled(functionName, arguments...)
}
// MethodCalled tells the mock object that the given method has been called, and gets
// an array of arguments to return. Panics if the call is unexpected (i.e. not preceded
// by appropriate .On .Return() calls)
// If Call.WaitFor is set, blocks until the channel is closed or receives a message.
func (m *Mock) MethodCalled(methodName string, arguments ...interface{}) Arguments {
m.mutex.Lock()
found, call := m.findExpectedCall(methodName, arguments...)
if found < 0 {
// we have to fail here - because we don't know what to do
// as the return arguments. This is because:
//
// a) this is a totally unexpected call to this method,
// b) the arguments are not what was expected, or
// c) the developer has forgotten to add an accompanying On...Return pair.
closestFound, closestCall := m.findClosestCall(methodName, arguments...)
m.mutex.Unlock()
if closestFound {
panic(fmt.Sprintf("\n\nmock: Unexpected Method Call\n-----------------------------\n\n%s\n\nThe closest call I have is: \n\n%s\n\n%s\n", callString(methodName, arguments, true), callString(methodName, closestCall.Arguments, true), diffArguments(closestCall.Arguments, arguments)))
} else {
panic(fmt.Sprintf("\nassert: mock: I don't know what to return because the method call was unexpected.\n\tEither do Mock.On(\"%s\").Return(...) first, or remove the %s() call.\n\tThis method was unexpected:\n\t\t%s\n\tat: %s", methodName, methodName, callString(methodName, arguments, true), assert.CallerInfo()))
}
}
if call.Repeatability == 1 {
call.Repeatability = -1
} else if call.Repeatability > 1 {
call.Repeatability--
}
call.totalCalls++
// add the call
m.Calls = append(m.Calls, *newCall(m, methodName, assert.CallerInfo(), arguments...))
m.mutex.Unlock()
// block if specified
if call.WaitFor != nil {
<-call.WaitFor
} else {
time.Sleep(call.waitTime)
}
m.mutex.Lock()
runFn := call.RunFn
m.mutex.Unlock()
if runFn != nil {
runFn(arguments)
}
m.mutex.Lock()
returnArgs := call.ReturnArguments
m.mutex.Unlock()
return returnArgs
}
/*
Assertions
*/
type assertExpectationser interface {
AssertExpectations(TestingT) bool
}
// AssertExpectationsForObjects asserts that everything specified with On and Return
// of the specified objects was in fact called as expected.
//
// Calls may have occurred in any order.
func AssertExpectationsForObjects(t TestingT, testObjects ...interface{}) bool {
for _, obj := range testObjects {
if m, ok := obj.(Mock); ok {
t.Logf("Deprecated mock.AssertExpectationsForObjects(myMock.Mock) use mock.AssertExpectationsForObjects(myMock)")
obj = &m
}
m := obj.(assertExpectationser)
if !m.AssertExpectations(t) {
t.Logf("Expectations didn't match for Mock: %+v", reflect.TypeOf(m))
return false
}
}
return true
}
// AssertExpectations asserts that everything specified with On and Return was
// in fact called as expected. Calls may have occurred in any order.
func (m *Mock) AssertExpectations(t TestingT) bool {
m.mutex.Lock()
defer m.mutex.Unlock()
var somethingMissing bool
var failedExpectations int
// iterate through each expectation
expectedCalls := m.expectedCalls()
for _, expectedCall := range expectedCalls {
if !expectedCall.optional && !m.methodWasCalled(expectedCall.Method, expectedCall.Arguments) && expectedCall.totalCalls == 0 {
somethingMissing = true
failedExpectations++
t.Logf("FAIL:\t%s(%s)\n\t\tat: %s", expectedCall.Method, expectedCall.Arguments.String(), expectedCall.callerInfo)
} else {
if expectedCall.Repeatability > 0 {
somethingMissing = true
failedExpectations++
t.Logf("FAIL:\t%s(%s)\n\t\tat: %s", expectedCall.Method, expectedCall.Arguments.String(), expectedCall.callerInfo)
} else {
t.Logf("PASS:\t%s(%s)", expectedCall.Method, expectedCall.Arguments.String())
}
}
}
if somethingMissing {
t.Errorf("FAIL: %d out of %d expectation(s) were met.\n\tThe code you are testing needs to make %d more call(s).\n\tat: %s", len(expectedCalls)-failedExpectations, len(expectedCalls), failedExpectations, assert.CallerInfo())
}
return !somethingMissing
}
// AssertNumberOfCalls asserts that the method was called expectedCalls times.
func (m *Mock) AssertNumberOfCalls(t TestingT, methodName string, expectedCalls int) bool {
m.mutex.Lock()
defer m.mutex.Unlock()
var actualCalls int
for _, call := range m.calls() {
if call.Method == methodName {
actualCalls++
}
}
return assert.Equal(t, expectedCalls, actualCalls, fmt.Sprintf("Expected number of calls (%d) does not match the actual number of calls (%d).", expectedCalls, actualCalls))
}
// AssertCalled asserts that the method was called.
// It can produce a false result when an argument is a pointer type and the underlying value changed after calling the mocked method.
func (m *Mock) AssertCalled(t TestingT, methodName string, arguments ...interface{}) bool {
m.mutex.Lock()
defer m.mutex.Unlock()
if !assert.True(t, m.methodWasCalled(methodName, arguments), fmt.Sprintf("The \"%s\" method should have been called with %d argument(s), but was not.", methodName, len(arguments))) {
t.Logf("%v", m.expectedCalls())
return false
}
return true
}
// AssertNotCalled asserts that the method was not called.
// It can produce a false result when an argument is a pointer type and the underlying value changed after calling the mocked method.
func (m *Mock) AssertNotCalled(t TestingT, methodName string, arguments ...interface{}) bool {
m.mutex.Lock()
defer m.mutex.Unlock()
if !assert.False(t, m.methodWasCalled(methodName, arguments), fmt.Sprintf("The \"%s\" method was called with %d argument(s), but should NOT have been.", methodName, len(arguments))) {
t.Logf("%v", m.expectedCalls())
return false
}
return true
}
func (m *Mock) methodWasCalled(methodName string, expected []interface{}) bool {
for _, call := range m.calls() {
if call.Method == methodName {
_, differences := Arguments(expected).Diff(call.Arguments)
if differences == 0 {
// found the expected call
return true
}
}
}
// we didn't find the expected call
return false
}
func (m *Mock) expectedCalls() []*Call {
return append([]*Call{}, m.ExpectedCalls...)
}
func (m *Mock) calls() []Call {
return append([]Call{}, m.Calls...)
}
/*
Arguments
*/
// Arguments holds an array of method arguments or return values.
type Arguments []interface{}
const (
// Anything is used in Diff and Assert when the argument being tested
// shouldn't be taken into consideration.
Anything string = "mock.Anything"
)
// AnythingOfTypeArgument is a string that contains the type of an argument
// for use when type checking. Used in Diff and Assert.
type AnythingOfTypeArgument string
// AnythingOfType returns an AnythingOfTypeArgument object containing the
// name of the type to check for. Used in Diff and Assert.
//
// For example:
// Assert(t, AnythingOfType("string"), AnythingOfType("int"))
func AnythingOfType(t string) AnythingOfTypeArgument {
return AnythingOfTypeArgument(t)
}
// argumentMatcher performs custom argument matching, returning whether or
// not the argument is matched by the expectation fixture function.
type argumentMatcher struct {
// fn is a function which accepts one argument, and returns a bool.
fn reflect.Value
}
func (f argumentMatcher) Matches(argument interface{}) bool {
expectType := f.fn.Type().In(0)
expectTypeNilSupported := false
switch expectType.Kind() {
case reflect.Interface, reflect.Chan, reflect.Func, reflect.Map, reflect.Slice, reflect.Ptr:
expectTypeNilSupported = true
}
argType := reflect.TypeOf(argument)
var arg reflect.Value
if argType == nil {
arg = reflect.New(expectType).Elem()
} else {
arg = reflect.ValueOf(argument)
}
if argType == nil && !expectTypeNilSupported {
panic(errors.New("attempting to call matcher with nil for non-nil expected type"))
}
if argType == nil || argType.AssignableTo(expectType) {
result := f.fn.Call([]reflect.Value{arg})
return result[0].Bool()
}
return false
}
func (f argumentMatcher) String() string {
return fmt.Sprintf("func(%s) bool", f.fn.Type().In(0).Name())
}
// MatchedBy can be used to match a mock call based on only certain properties
// from a complex struct or some calculation. It takes a function that will be
// evaluated with the called argument and will return true when there's a match
// and false otherwise.
//
// Example:
// m.On("Do", MatchedBy(func(req *http.Request) bool { return req.Host == "example.com" }))
//
// |fn|, must be a function accepting a single argument (of the expected type)
// which returns a bool. If |fn| doesn't match the required signature,
// MatchedBy() panics.
func MatchedBy(fn interface{}) argumentMatcher {
fnType := reflect.TypeOf(fn)
if fnType.Kind() != reflect.Func {
panic(fmt.Sprintf("assert: arguments: %s is not a func", fn))
}
if fnType.NumIn() != 1 {
panic(fmt.Sprintf("assert: arguments: %s does not take exactly one argument", fn))
}
if fnType.NumOut() != 1 || fnType.Out(0).Kind() != reflect.Bool {
panic(fmt.Sprintf("assert: arguments: %s does not return a bool", fn))
}
return argumentMatcher{fn: reflect.ValueOf(fn)}
}
// Get Returns the argument at the specified index.
func (args Arguments) Get(index int) interface{} {
if index+1 > len(args) {
panic(fmt.Sprintf("assert: arguments: Cannot call Get(%d) because there are %d argument(s).", index, len(args)))
}
return args[index]
}
// Is gets whether the objects match the arguments specified.
func (args Arguments) Is(objects ...interface{}) bool {
for i, obj := range args {
if obj != objects[i] {
return false
}
}
return true
}
// Diff gets a string describing the differences between the arguments
// and the specified objects.
//
// Returns the diff string and number of differences found.
func (args Arguments) Diff(objects []interface{}) (string, int) {
var output = "\n"
var differences int
var maxArgCount = len(args)
if len(objects) > maxArgCount {
maxArgCount = len(objects)
}
for i := 0; i < maxArgCount; i++ {
var actual, expected interface{}
if len(objects) <= i {
actual = "(Missing)"
} else {
actual = objects[i]
}
if len(args) <= i {
expected = "(Missing)"
} else {
expected = args[i]
}
if matcher, ok := expected.(argumentMatcher); ok {
if matcher.Matches(actual) {
output = fmt.Sprintf("%s\t%d: PASS: %s matched by %s\n", output, i, actual, matcher)
} else {
differences++
output = fmt.Sprintf("%s\t%d: PASS: %s not matched by %s\n", output, i, actual, matcher)
}
} else if reflect.TypeOf(expected) == reflect.TypeOf((*AnythingOfTypeArgument)(nil)).Elem() {
// type checking
if reflect.TypeOf(actual).Name() != string(expected.(AnythingOfTypeArgument)) && reflect.TypeOf(actual).String() != string(expected.(AnythingOfTypeArgument)) {
// not match
differences++
output = fmt.Sprintf("%s\t%d: FAIL: type %s != type %s - %s\n", output, i, expected, reflect.TypeOf(actual).Name(), actual)
}
} else {
// normal checking
if assert.ObjectsAreEqual(expected, Anything) || assert.ObjectsAreEqual(actual, Anything) || assert.ObjectsAreEqual(actual, expected) {
// match
output = fmt.Sprintf("%s\t%d: PASS: %s == %s\n", output, i, actual, expected)
} else {
// not match
differences++
output = fmt.Sprintf("%s\t%d: FAIL: %s != %s\n", output, i, actual, expected)
}
}
}
if differences == 0 {
return "No differences.", differences
}
return output, differences
}
// Assert compares the arguments with the specified objects and fails if
// they do not exactly match.
func (args Arguments) Assert(t TestingT, objects ...interface{}) bool {
// get the differences
diff, diffCount := args.Diff(objects)
if diffCount == 0 {
return true
}
// there are differences... report them...
t.Logf(diff)
t.Errorf("%sArguments do not match.", assert.CallerInfo())
return false
}
// String gets the argument at the specified index. Panics if there is no argument, or
// if the argument is of the wrong type.
//
// If no index is provided, String() returns a complete string representation
// of the arguments.
func (args Arguments) String(indexOrNil ...int) string {
if len(indexOrNil) == 0 {
// normal String() method - return a string representation of the args
var argsStr []string
for _, arg := range args {
argsStr = append(argsStr, fmt.Sprintf("%s", reflect.TypeOf(arg)))
}
return strings.Join(argsStr, ",")
} else if len(indexOrNil) == 1 {
// Index has been specified - get the argument at that index
var index = indexOrNil[0]
var s string
var ok bool
if s, ok = args.Get(index).(string); !ok {
panic(fmt.Sprintf("assert: arguments: String(%d) failed because object wasn't correct type: %s", index, args.Get(index)))
}
return s
}
panic(fmt.Sprintf("assert: arguments: Wrong number of arguments passed to String. Must be 0 or 1, not %d", len(indexOrNil)))
}
// Int gets the argument at the specified index. Panics if there is no argument, or
// if the argument is of the wrong type.
func (args Arguments) Int(index int) int {
var s int
var ok bool
if s, ok = args.Get(index).(int); !ok {
panic(fmt.Sprintf("assert: arguments: Int(%d) failed because object wasn't correct type: %v", index, args.Get(index)))
}
return s
}
// Error gets the argument at the specified index. Panics if there is no argument, or
// if the argument is of the wrong type.
func (args Arguments) Error(index int) error {
obj := args.Get(index)
var s error
var ok bool
if obj == nil {
return nil
}
if s, ok = obj.(error); !ok {
panic(fmt.Sprintf("assert: arguments: Error(%d) failed because object wasn't correct type: %v", index, args.Get(index)))
}
return s
}
// Bool gets the argument at the specified index. Panics if there is no argument, or
// if the argument is of the wrong type.
func (args Arguments) Bool(index int) bool {
var s bool
var ok bool
if s, ok = args.Get(index).(bool); !ok {
panic(fmt.Sprintf("assert: arguments: Bool(%d) failed because object wasn't correct type: %v", index, args.Get(index)))
}
return s
}
func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
t := reflect.TypeOf(v)
k := t.Kind()
if k == reflect.Ptr {
t = t.Elem()
k = t.Kind()
}
return t, k
}
func diffArguments(expected Arguments, actual Arguments) string {
if len(expected) != len(actual) {
return fmt.Sprintf("Provided %v arguments, mocked for %v arguments", len(expected), len(actual))
}
for x := range expected {
if diffString := diff(expected[x], actual[x]); diffString != "" {
return fmt.Sprintf("Difference found in argument %v:\n\n%s", x, diffString)
}
}
return ""
}
// diff returns a diff of both values as long as both are of the same type and
// are a struct, map, slice or array. Otherwise it returns an empty string.
func diff(expected interface{}, actual interface{}) string {
if expected == nil || actual == nil {
return ""
}
et, ek := typeAndKind(expected)
at, _ := typeAndKind(actual)
if et != at {
return ""
}
if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array {
return ""
}
e := spewConfig.Sdump(expected)
a := spewConfig.Sdump(actual)
diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
A: difflib.SplitLines(e),
B: difflib.SplitLines(a),
FromFile: "Expected",
FromDate: "",
ToFile: "Actual",
ToDate: "",
Context: 1,
})
return diff
}
var spewConfig = spew.ConfigState{
Indent: " ",
DisablePointerAddresses: true,
DisableCapacities: true,
SortKeys: true,
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,12 @@
package testify
import (
"github.com/stretchr/testify/assert"
"testing"
)
func TestImports(t *testing.T) {
if assert.Equal(t, 1, 1) != true {
t.Error("Something is wrong.")
}
}

View file

@ -0,0 +1,385 @@
package require
import (
"errors"
"testing"
"time"
)
func TestImplementsWrapper(t *testing.T) {
require := New(t)
require.Implements((*AssertionTesterInterface)(nil), new(AssertionTesterConformingObject))
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Implements((*AssertionTesterInterface)(nil), new(AssertionTesterNonConformingObject))
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestIsTypeWrapper(t *testing.T) {
require := New(t)
require.IsType(new(AssertionTesterConformingObject), new(AssertionTesterConformingObject))
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.IsType(new(AssertionTesterConformingObject), new(AssertionTesterNonConformingObject))
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestEqualWrapper(t *testing.T) {
require := New(t)
require.Equal(1, 1)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Equal(1, 2)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotEqualWrapper(t *testing.T) {
require := New(t)
require.NotEqual(1, 2)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.NotEqual(2, 2)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestExactlyWrapper(t *testing.T) {
require := New(t)
a := float32(1)
b := float32(1)
c := float64(1)
require.Exactly(a, b)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Exactly(a, c)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotNilWrapper(t *testing.T) {
require := New(t)
require.NotNil(t, new(AssertionTesterConformingObject))
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.NotNil(nil)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNilWrapper(t *testing.T) {
require := New(t)
require.Nil(nil)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Nil(new(AssertionTesterConformingObject))
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestTrueWrapper(t *testing.T) {
require := New(t)
require.True(true)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.True(false)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestFalseWrapper(t *testing.T) {
require := New(t)
require.False(false)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.False(true)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestContainsWrapper(t *testing.T) {
require := New(t)
require.Contains("Hello World", "Hello")
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Contains("Hello World", "Salut")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotContainsWrapper(t *testing.T) {
require := New(t)
require.NotContains("Hello World", "Hello!")
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.NotContains("Hello World", "Hello")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestPanicsWrapper(t *testing.T) {
require := New(t)
require.Panics(func() {
panic("Panic!")
})
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Panics(func() {})
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotPanicsWrapper(t *testing.T) {
require := New(t)
require.NotPanics(func() {})
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.NotPanics(func() {
panic("Panic!")
})
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNoErrorWrapper(t *testing.T) {
require := New(t)
require.NoError(nil)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.NoError(errors.New("some error"))
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestErrorWrapper(t *testing.T) {
require := New(t)
require.Error(errors.New("some error"))
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Error(nil)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestEqualErrorWrapper(t *testing.T) {
require := New(t)
require.EqualError(errors.New("some error"), "some error")
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.EqualError(errors.New("some error"), "Not some error")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestEmptyWrapper(t *testing.T) {
require := New(t)
require.Empty("")
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Empty("x")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotEmptyWrapper(t *testing.T) {
require := New(t)
require.NotEmpty("x")
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.NotEmpty("")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestWithinDurationWrapper(t *testing.T) {
require := New(t)
a := time.Now()
b := a.Add(10 * time.Second)
require.WithinDuration(a, b, 15*time.Second)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.WithinDuration(a, b, 5*time.Second)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestInDeltaWrapper(t *testing.T) {
require := New(t)
require.InDelta(1.001, 1, 0.01)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.InDelta(1, 2, 0.5)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestZeroWrapper(t *testing.T) {
require := New(t)
require.Zero(0)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.Zero(1)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotZeroWrapper(t *testing.T) {
require := New(t)
require.NotZero(1)
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.NotZero(0)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEqWrapper_EqualSONString(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"hello": "world", "foo": "bar"}`)
if mockT.Failed {
t.Error("Check should pass")
}
}
func TestJSONEqWrapper_EquivalentButNotEqual(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq(`{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
if mockT.Failed {
t.Error("Check should pass")
}
}
func TestJSONEqWrapper_HashOfArraysAndHashes(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq("{\r\n\t\"numeric\": 1.5,\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]],\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\"\r\n}",
"{\r\n\t\"numeric\": 1.5,\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\",\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]]\r\n}")
if mockT.Failed {
t.Error("Check should pass")
}
}
func TestJSONEqWrapper_Array(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `["foo", {"nested": "hash", "hello": "world"}]`)
if mockT.Failed {
t.Error("Check should pass")
}
}
func TestJSONEqWrapper_HashAndArrayNotEquivalent(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `{"foo": "bar", {"nested": "hash", "hello": "world"}}`)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEqWrapper_HashesNotEquivalent(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq(`{"foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEqWrapper_ActualIsNotJSON(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq(`{"foo": "bar"}`, "Not JSON")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEqWrapper_ExpectedIsNotJSON(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq("Not JSON", `{"foo": "bar", "hello": "world"}`)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEqWrapper_ExpectedAndActualNotJSON(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq("Not JSON", "Not JSON")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEqWrapper_ArraysOfDifferentOrder(t *testing.T) {
mockT := new(MockT)
mockRequire := New(mockT)
mockRequire.JSONEq(`["foo", {"hello": "world", "nested": "hash"}]`, `[{ "hello": "world", "nested": "hash"}, "foo"]`)
if !mockT.Failed {
t.Error("Check should fail")
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,6 @@
{{.Comment}}
func {{.DocInfo.Name}}(t TestingT, {{.Params}}) {
if h, ok := t.(tHelper); ok { h.Helper() }
if !assert.{{.DocInfo.Name}}(t, {{.ForwardedParams}}) {
t.FailNow()
}

File diff suppressed because it is too large Load diff

View file

@ -1,4 +1,5 @@
{{.CommentWithoutT "a"}}
func (a *Assertions) {{.DocInfo.Name}}({{.Params}}) {
if h, ok := a.t.(tHelper); ok { h.Helper() }
{{.DocInfo.Name}}(a.t, {{.ForwardedParams}})
}

View file

@ -6,4 +6,8 @@ type TestingT interface {
FailNow()
}
type tHelper interface {
Helper()
}
//go:generate go run ../_codegen/main.go -output-package=require -template=require.go.tmpl -include-format-funcs

View file

@ -0,0 +1,369 @@
package require
import (
"errors"
"testing"
"time"
)
// AssertionTesterInterface defines an interface to be used for testing assertion methods
type AssertionTesterInterface interface {
TestMethod()
}
// AssertionTesterConformingObject is an object that conforms to the AssertionTesterInterface interface
type AssertionTesterConformingObject struct {
}
func (a *AssertionTesterConformingObject) TestMethod() {
}
// AssertionTesterNonConformingObject is an object that does not conform to the AssertionTesterInterface interface
type AssertionTesterNonConformingObject struct {
}
type MockT struct {
Failed bool
}
func (t *MockT) FailNow() {
t.Failed = true
}
func (t *MockT) Errorf(format string, args ...interface{}) {
_, _ = format, args
}
func TestImplements(t *testing.T) {
Implements(t, (*AssertionTesterInterface)(nil), new(AssertionTesterConformingObject))
mockT := new(MockT)
Implements(mockT, (*AssertionTesterInterface)(nil), new(AssertionTesterNonConformingObject))
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestIsType(t *testing.T) {
IsType(t, new(AssertionTesterConformingObject), new(AssertionTesterConformingObject))
mockT := new(MockT)
IsType(mockT, new(AssertionTesterConformingObject), new(AssertionTesterNonConformingObject))
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestEqual(t *testing.T) {
Equal(t, 1, 1)
mockT := new(MockT)
Equal(mockT, 1, 2)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotEqual(t *testing.T) {
NotEqual(t, 1, 2)
mockT := new(MockT)
NotEqual(mockT, 2, 2)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestExactly(t *testing.T) {
a := float32(1)
b := float32(1)
c := float64(1)
Exactly(t, a, b)
mockT := new(MockT)
Exactly(mockT, a, c)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotNil(t *testing.T) {
NotNil(t, new(AssertionTesterConformingObject))
mockT := new(MockT)
NotNil(mockT, nil)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNil(t *testing.T) {
Nil(t, nil)
mockT := new(MockT)
Nil(mockT, new(AssertionTesterConformingObject))
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestTrue(t *testing.T) {
True(t, true)
mockT := new(MockT)
True(mockT, false)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestFalse(t *testing.T) {
False(t, false)
mockT := new(MockT)
False(mockT, true)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestContains(t *testing.T) {
Contains(t, "Hello World", "Hello")
mockT := new(MockT)
Contains(mockT, "Hello World", "Salut")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotContains(t *testing.T) {
NotContains(t, "Hello World", "Hello!")
mockT := new(MockT)
NotContains(mockT, "Hello World", "Hello")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestPanics(t *testing.T) {
Panics(t, func() {
panic("Panic!")
})
mockT := new(MockT)
Panics(mockT, func() {})
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotPanics(t *testing.T) {
NotPanics(t, func() {})
mockT := new(MockT)
NotPanics(mockT, func() {
panic("Panic!")
})
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNoError(t *testing.T) {
NoError(t, nil)
mockT := new(MockT)
NoError(mockT, errors.New("some error"))
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestError(t *testing.T) {
Error(t, errors.New("some error"))
mockT := new(MockT)
Error(mockT, nil)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestEqualError(t *testing.T) {
EqualError(t, errors.New("some error"), "some error")
mockT := new(MockT)
EqualError(mockT, errors.New("some error"), "Not some error")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestEmpty(t *testing.T) {
Empty(t, "")
mockT := new(MockT)
Empty(mockT, "x")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotEmpty(t *testing.T) {
NotEmpty(t, "x")
mockT := new(MockT)
NotEmpty(mockT, "")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestWithinDuration(t *testing.T) {
a := time.Now()
b := a.Add(10 * time.Second)
WithinDuration(t, a, b, 15*time.Second)
mockT := new(MockT)
WithinDuration(mockT, a, b, 5*time.Second)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestInDelta(t *testing.T) {
InDelta(t, 1.001, 1, 0.01)
mockT := new(MockT)
InDelta(mockT, 1, 2, 0.5)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestZero(t *testing.T) {
Zero(t, "")
mockT := new(MockT)
Zero(mockT, "x")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestNotZero(t *testing.T) {
NotZero(t, "x")
mockT := new(MockT)
NotZero(mockT, "")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEq_EqualSONString(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, `{"hello": "world", "foo": "bar"}`, `{"hello": "world", "foo": "bar"}`)
if mockT.Failed {
t.Error("Check should pass")
}
}
func TestJSONEq_EquivalentButNotEqual(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
if mockT.Failed {
t.Error("Check should pass")
}
}
func TestJSONEq_HashOfArraysAndHashes(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, "{\r\n\t\"numeric\": 1.5,\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]],\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\"\r\n}",
"{\r\n\t\"numeric\": 1.5,\r\n\t\"hash\": {\"nested\": \"hash\", \"nested_slice\": [\"this\", \"is\", \"nested\"]},\r\n\t\"string\": \"foo\",\r\n\t\"array\": [{\"foo\": \"bar\"}, 1, \"string\", [\"nested\", \"array\", 5.5]]\r\n}")
if mockT.Failed {
t.Error("Check should pass")
}
}
func TestJSONEq_Array(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, `["foo", {"hello": "world", "nested": "hash"}]`, `["foo", {"nested": "hash", "hello": "world"}]`)
if mockT.Failed {
t.Error("Check should pass")
}
}
func TestJSONEq_HashAndArrayNotEquivalent(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, `["foo", {"hello": "world", "nested": "hash"}]`, `{"foo": "bar", {"nested": "hash", "hello": "world"}}`)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEq_HashesNotEquivalent(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, `{"foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEq_ActualIsNotJSON(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, `{"foo": "bar"}`, "Not JSON")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEq_ExpectedIsNotJSON(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, "Not JSON", `{"foo": "bar", "hello": "world"}`)
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEq_ExpectedAndActualNotJSON(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, "Not JSON", "Not JSON")
if !mockT.Failed {
t.Error("Check should fail")
}
}
func TestJSONEq_ArraysOfDifferentOrder(t *testing.T) {
mockT := new(MockT)
JSONEq(mockT, `["foo", {"hello": "world", "nested": "hash"}]`, `[{ "hello": "world", "nested": "hash"}, "foo"]`)
if !mockT.Failed {
t.Error("Check should fail")
}
}

View file

@ -0,0 +1,65 @@
// Package suite contains logic for creating testing suite structs
// and running the methods on those structs as tests. The most useful
// piece of this package is that you can create setup/teardown methods
// on your testing suites, which will run before/after the whole suite
// or individual tests (depending on which interface(s) you
// implement).
//
// A testing suite is usually built by first extending the built-in
// suite functionality from suite.Suite in testify. Alternatively,
// you could reproduce that logic on your own if you wanted (you
// just need to implement the TestingSuite interface from
// suite/interfaces.go).
//
// After that, you can implement any of the interfaces in
// suite/interfaces.go to add setup/teardown functionality to your
// suite, and add any methods that start with "Test" to add tests.
// Methods that do not match any suite interfaces and do not begin
// with "Test" will not be run by testify, and can safely be used as
// helper methods.
//
// Once you've built your testing suite, you need to run the suite
// (using suite.Run from testify) inside any function that matches the
// identity that "go test" is already looking for (i.e.
// func(*testing.T)).
//
// Regular expression to select test suites specified command-line
// argument "-run". Regular expression to select the methods
// of test suites specified command-line argument "-m".
// Suite object has assertion methods.
//
// A crude example:
// // Basic imports
// import (
// "testing"
// "github.com/stretchr/testify/assert"
// "github.com/stretchr/testify/suite"
// )
//
// // Define the suite, and absorb the built-in basic suite
// // functionality from testify - including a T() method which
// // returns the current testing context
// type ExampleTestSuite struct {
// suite.Suite
// VariableThatShouldStartAtFive int
// }
//
// // Make sure that VariableThatShouldStartAtFive is set to five
// // before each test
// func (suite *ExampleTestSuite) SetupTest() {
// suite.VariableThatShouldStartAtFive = 5
// }
//
// // All methods that begin with "Test" are run as tests within a
// // suite.
// func (suite *ExampleTestSuite) TestExample() {
// assert.Equal(suite.T(), 5, suite.VariableThatShouldStartAtFive)
// suite.Equal(5, suite.VariableThatShouldStartAtFive)
// }
//
// // In order for 'go test' to run this suite, we need to create
// // a normal test function and pass our suite to suite.Run
// func TestExampleTestSuite(t *testing.T) {
// suite.Run(t, new(ExampleTestSuite))
// }
package suite

View file

@ -0,0 +1,46 @@
package suite
import "testing"
// TestingSuite can store and return the current *testing.T context
// generated by 'go test'.
type TestingSuite interface {
T() *testing.T
SetT(*testing.T)
}
// SetupAllSuite has a SetupSuite method, which will run before the
// tests in the suite are run.
type SetupAllSuite interface {
SetupSuite()
}
// SetupTestSuite has a SetupTest method, which will run before each
// test in the suite.
type SetupTestSuite interface {
SetupTest()
}
// TearDownAllSuite has a TearDownSuite method, which will run after
// all the tests in the suite have been run.
type TearDownAllSuite interface {
TearDownSuite()
}
// TearDownTestSuite has a TearDownTest method, which will run after
// each test in the suite.
type TearDownTestSuite interface {
TearDownTest()
}
// BeforeTest has a function to be executed right before the test
// starts and receives the suite and test names as input
type BeforeTest interface {
BeforeTest(suiteName, testName string)
}
// AfterTest has a function to be executed right after the test
// finishes and receives the suite and test names as input
type AfterTest interface {
AfterTest(suiteName, testName string)
}

View file

@ -0,0 +1,136 @@
package suite
import (
"flag"
"fmt"
"os"
"reflect"
"regexp"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
var allTestsFilter = func(_, _ string) (bool, error) { return true, nil }
var matchMethod = flag.String("testify.m", "", "regular expression to select tests of the testify suite to run")
// Suite is a basic testing suite with methods for storing and
// retrieving the current *testing.T context.
type Suite struct {
*assert.Assertions
require *require.Assertions
t *testing.T
}
// T retrieves the current *testing.T context.
func (suite *Suite) T() *testing.T {
return suite.t
}
// SetT sets the current *testing.T context.
func (suite *Suite) SetT(t *testing.T) {
suite.t = t
suite.Assertions = assert.New(t)
suite.require = require.New(t)
}
// Require returns a require context for suite.
func (suite *Suite) Require() *require.Assertions {
if suite.require == nil {
suite.require = require.New(suite.T())
}
return suite.require
}
// Assert returns an assert context for suite. Normally, you can call
// `suite.NoError(expected, actual)`, but for situations where the embedded
// methods are overridden (for example, you might want to override
// assert.Assertions with require.Assertions), this method is provided so you
// can call `suite.Assert().NoError()`.
func (suite *Suite) Assert() *assert.Assertions {
if suite.Assertions == nil {
suite.Assertions = assert.New(suite.T())
}
return suite.Assertions
}
// Run takes a testing suite and runs all of the tests attached
// to it.
func Run(t *testing.T, suite TestingSuite) {
suite.SetT(t)
if setupAllSuite, ok := suite.(SetupAllSuite); ok {
setupAllSuite.SetupSuite()
}
defer func() {
if tearDownAllSuite, ok := suite.(TearDownAllSuite); ok {
tearDownAllSuite.TearDownSuite()
}
}()
methodFinder := reflect.TypeOf(suite)
tests := []testing.InternalTest{}
for index := 0; index < methodFinder.NumMethod(); index++ {
method := methodFinder.Method(index)
ok, err := methodFilter(method.Name)
if err != nil {
fmt.Fprintf(os.Stderr, "testify: invalid regexp for -m: %s\n", err)
os.Exit(1)
}
if ok {
test := testing.InternalTest{
Name: method.Name,
F: func(t *testing.T) {
parentT := suite.T()
suite.SetT(t)
if setupTestSuite, ok := suite.(SetupTestSuite); ok {
setupTestSuite.SetupTest()
}
if beforeTestSuite, ok := suite.(BeforeTest); ok {
beforeTestSuite.BeforeTest(methodFinder.Elem().Name(), method.Name)
}
defer func() {
if afterTestSuite, ok := suite.(AfterTest); ok {
afterTestSuite.AfterTest(methodFinder.Elem().Name(), method.Name)
}
if tearDownTestSuite, ok := suite.(TearDownTestSuite); ok {
tearDownTestSuite.TearDownTest()
}
suite.SetT(parentT)
}()
method.Func.Call([]reflect.Value{reflect.ValueOf(suite)})
},
}
tests = append(tests, test)
}
}
runTests(t, tests)
}
func runTests(t testing.TB, tests []testing.InternalTest) {
r, ok := t.(runner)
if !ok { // backwards compatibility with Go 1.6 and below
if !testing.RunTests(allTestsFilter, tests) {
t.Fail()
}
return
}
for _, test := range tests {
r.Run(test.Name, test.F)
}
}
// Filtering method according to set regular expression
// specified command-line argument -m
func methodFilter(name string) (bool, error) {
if ok, _ := regexp.MatchString("^Test", name); !ok {
return false, nil
}
return regexp.MatchString(*matchMethod, name)
}
type runner interface {
Run(name string, f func(t *testing.T)) bool
}

View file

@ -0,0 +1,294 @@
package suite
import (
"errors"
"io/ioutil"
"os"
"testing"
"time"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
// SuiteRequireTwice is intended to test the usage of suite.Require in two
// different tests
type SuiteRequireTwice struct{ Suite }
// TestSuiteRequireTwice checks for regressions of issue #149 where
// suite.requirements was not initialised in suite.SetT()
// A regression would result on these tests panicking rather than failing.
func TestSuiteRequireTwice(t *testing.T) {
ok := testing.RunTests(
allTestsFilter,
[]testing.InternalTest{{
Name: "TestSuiteRequireTwice",
F: func(t *testing.T) {
suite := new(SuiteRequireTwice)
Run(t, suite)
},
}},
)
assert.Equal(t, false, ok)
}
func (s *SuiteRequireTwice) TestRequireOne() {
r := s.Require()
r.Equal(1, 2)
}
func (s *SuiteRequireTwice) TestRequireTwo() {
r := s.Require()
r.Equal(1, 2)
}
// This suite is intended to store values to make sure that only
// testing-suite-related methods are run. It's also a fully
// functional example of a testing suite, using setup/teardown methods
// and a helper method that is ignored by testify. To make this look
// more like a real world example, all tests in the suite perform some
// type of assertion.
type SuiteTester struct {
// Include our basic suite logic.
Suite
// Keep counts of how many times each method is run.
SetupSuiteRunCount int
TearDownSuiteRunCount int
SetupTestRunCount int
TearDownTestRunCount int
TestOneRunCount int
TestTwoRunCount int
NonTestMethodRunCount int
SuiteNameBefore []string
TestNameBefore []string
SuiteNameAfter []string
TestNameAfter []string
TimeBefore []time.Time
TimeAfter []time.Time
}
type SuiteSkipTester struct {
// Include our basic suite logic.
Suite
// Keep counts of how many times each method is run.
SetupSuiteRunCount int
TearDownSuiteRunCount int
}
// The SetupSuite method will be run by testify once, at the very
// start of the testing suite, before any tests are run.
func (suite *SuiteTester) SetupSuite() {
suite.SetupSuiteRunCount++
}
func (suite *SuiteTester) BeforeTest(suiteName, testName string) {
suite.SuiteNameBefore = append(suite.SuiteNameBefore, suiteName)
suite.TestNameBefore = append(suite.TestNameBefore, testName)
suite.TimeBefore = append(suite.TimeBefore, time.Now())
}
func (suite *SuiteTester) AfterTest(suiteName, testName string) {
suite.SuiteNameAfter = append(suite.SuiteNameAfter, suiteName)
suite.TestNameAfter = append(suite.TestNameAfter, testName)
suite.TimeAfter = append(suite.TimeAfter, time.Now())
}
func (suite *SuiteSkipTester) SetupSuite() {
suite.SetupSuiteRunCount++
suite.T().Skip()
}
// The TearDownSuite method will be run by testify once, at the very
// end of the testing suite, after all tests have been run.
func (suite *SuiteTester) TearDownSuite() {
suite.TearDownSuiteRunCount++
}
func (suite *SuiteSkipTester) TearDownSuite() {
suite.TearDownSuiteRunCount++
}
// The SetupTest method will be run before every test in the suite.
func (suite *SuiteTester) SetupTest() {
suite.SetupTestRunCount++
}
// The TearDownTest method will be run after every test in the suite.
func (suite *SuiteTester) TearDownTest() {
suite.TearDownTestRunCount++
}
// Every method in a testing suite that begins with "Test" will be run
// as a test. TestOne is an example of a test. For the purposes of
// this example, we've included assertions in the tests, since most
// tests will issue assertions.
func (suite *SuiteTester) TestOne() {
beforeCount := suite.TestOneRunCount
suite.TestOneRunCount++
assert.Equal(suite.T(), suite.TestOneRunCount, beforeCount+1)
suite.Equal(suite.TestOneRunCount, beforeCount+1)
}
// TestTwo is another example of a test.
func (suite *SuiteTester) TestTwo() {
beforeCount := suite.TestTwoRunCount
suite.TestTwoRunCount++
assert.NotEqual(suite.T(), suite.TestTwoRunCount, beforeCount)
suite.NotEqual(suite.TestTwoRunCount, beforeCount)
}
func (suite *SuiteTester) TestSkip() {
suite.T().Skip()
}
// NonTestMethod does not begin with "Test", so it will not be run by
// testify as a test in the suite. This is useful for creating helper
// methods for your tests.
func (suite *SuiteTester) NonTestMethod() {
suite.NonTestMethodRunCount++
}
// TestRunSuite will be run by the 'go test' command, so within it, we
// can run our suite using the Run(*testing.T, TestingSuite) function.
func TestRunSuite(t *testing.T) {
suiteTester := new(SuiteTester)
Run(t, suiteTester)
// Normally, the test would end here. The following are simply
// some assertions to ensure that the Run function is working as
// intended - they are not part of the example.
// The suite was only run once, so the SetupSuite and TearDownSuite
// methods should have each been run only once.
assert.Equal(t, suiteTester.SetupSuiteRunCount, 1)
assert.Equal(t, suiteTester.TearDownSuiteRunCount, 1)
assert.Equal(t, len(suiteTester.SuiteNameAfter), 3)
assert.Equal(t, len(suiteTester.SuiteNameBefore), 3)
assert.Equal(t, len(suiteTester.TestNameAfter), 3)
assert.Equal(t, len(suiteTester.TestNameBefore), 3)
assert.Contains(t, suiteTester.TestNameAfter, "TestOne")
assert.Contains(t, suiteTester.TestNameAfter, "TestTwo")
assert.Contains(t, suiteTester.TestNameAfter, "TestSkip")
assert.Contains(t, suiteTester.TestNameBefore, "TestOne")
assert.Contains(t, suiteTester.TestNameBefore, "TestTwo")
assert.Contains(t, suiteTester.TestNameBefore, "TestSkip")
for _, suiteName := range suiteTester.SuiteNameAfter {
assert.Equal(t, "SuiteTester", suiteName)
}
for _, suiteName := range suiteTester.SuiteNameBefore {
assert.Equal(t, "SuiteTester", suiteName)
}
for _, when := range suiteTester.TimeAfter {
assert.False(t, when.IsZero())
}
for _, when := range suiteTester.TimeBefore {
assert.False(t, when.IsZero())
}
// There are three test methods (TestOne, TestTwo, and TestSkip), so
// the SetupTest and TearDownTest methods (which should be run once for
// each test) should have been run three times.
assert.Equal(t, suiteTester.SetupTestRunCount, 3)
assert.Equal(t, suiteTester.TearDownTestRunCount, 3)
// Each test should have been run once.
assert.Equal(t, suiteTester.TestOneRunCount, 1)
assert.Equal(t, suiteTester.TestTwoRunCount, 1)
// Methods that don't match the test method identifier shouldn't
// have been run at all.
assert.Equal(t, suiteTester.NonTestMethodRunCount, 0)
suiteSkipTester := new(SuiteSkipTester)
Run(t, suiteSkipTester)
// The suite was only run once, so the SetupSuite and TearDownSuite
// methods should have each been run only once, even though SetupSuite
// called Skip()
assert.Equal(t, suiteSkipTester.SetupSuiteRunCount, 1)
assert.Equal(t, suiteSkipTester.TearDownSuiteRunCount, 1)
}
func TestSuiteGetters(t *testing.T) {
suite := new(SuiteTester)
suite.SetT(t)
assert.NotNil(t, suite.Assert())
assert.Equal(t, suite.Assertions, suite.Assert())
assert.NotNil(t, suite.Require())
assert.Equal(t, suite.require, suite.Require())
}
type SuiteLoggingTester struct {
Suite
}
func (s *SuiteLoggingTester) TestLoggingPass() {
s.T().Log("TESTLOGPASS")
}
func (s *SuiteLoggingTester) TestLoggingFail() {
s.T().Log("TESTLOGFAIL")
assert.NotNil(s.T(), nil) // expected to fail
}
type StdoutCapture struct {
oldStdout *os.File
readPipe *os.File
}
func (sc *StdoutCapture) StartCapture() {
sc.oldStdout = os.Stdout
sc.readPipe, os.Stdout, _ = os.Pipe()
}
func (sc *StdoutCapture) StopCapture() (string, error) {
if sc.oldStdout == nil || sc.readPipe == nil {
return "", errors.New("StartCapture not called before StopCapture")
}
os.Stdout.Close()
os.Stdout = sc.oldStdout
bytes, err := ioutil.ReadAll(sc.readPipe)
if err != nil {
return "", err
}
return string(bytes), nil
}
func TestSuiteLogging(t *testing.T) {
suiteLoggingTester := new(SuiteLoggingTester)
capture := StdoutCapture{}
internalTest := testing.InternalTest{
Name: "SomeTest",
F: func(subT *testing.T) {
Run(subT, suiteLoggingTester)
},
}
capture.StartCapture()
testing.RunTests(allTestsFilter, []testing.InternalTest{internalTest})
output, err := capture.StopCapture()
require.NoError(t, err, "Got an error trying to capture stdout and stderr!")
require.NotEmpty(t, output, "output content must not be empty")
// Failed tests' output is always printed
assert.Contains(t, output, "TESTLOGFAIL")
if testing.Verbose() {
// In verbose mode, output from successful tests is also printed
assert.Contains(t, output, "TESTLOGPASS")
} else {
assert.NotContains(t, output, "TESTLOGPASS")
}
}

View file

@ -0,0 +1,15 @@
ISC License
Copyright (c) 2012-2016 Dave Collins <dave@davec.name>
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

View file

@ -0,0 +1,152 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is not running on Google App Engine, compiled by GopherJS, and
// "-tags safe" is not added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build !js,!appengine,!safe,!disableunsafe
package spew
import (
"reflect"
"unsafe"
)
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = false
// ptrSize is the size of a pointer on the current arch.
ptrSize = unsafe.Sizeof((*byte)(nil))
)
var (
// offsetPtr, offsetScalar, and offsetFlag are the offsets for the
// internal reflect.Value fields. These values are valid before golang
// commit ecccf07e7f9d which changed the format. The are also valid
// after commit 82f48826c6c7 which changed the format again to mirror
// the original format. Code in the init function updates these offsets
// as necessary.
offsetPtr = uintptr(ptrSize)
offsetScalar = uintptr(0)
offsetFlag = uintptr(ptrSize * 2)
// flagKindWidth and flagKindShift indicate various bits that the
// reflect package uses internally to track kind information.
//
// flagRO indicates whether or not the value field of a reflect.Value is
// read-only.
//
// flagIndir indicates whether the value field of a reflect.Value is
// the actual data or a pointer to the data.
//
// These values are valid before golang commit 90a7c3c86944 which
// changed their positions. Code in the init function updates these
// flags as necessary.
flagKindWidth = uintptr(5)
flagKindShift = uintptr(flagKindWidth - 1)
flagRO = uintptr(1 << 0)
flagIndir = uintptr(1 << 1)
)
func init() {
// Older versions of reflect.Value stored small integers directly in the
// ptr field (which is named val in the older versions). Versions
// between commits ecccf07e7f9d and 82f48826c6c7 added a new field named
// scalar for this purpose which unfortunately came before the flag
// field, so the offset of the flag field is different for those
// versions.
//
// This code constructs a new reflect.Value from a known small integer
// and checks if the size of the reflect.Value struct indicates it has
// the scalar field. When it does, the offsets are updated accordingly.
vv := reflect.ValueOf(0xf00)
if unsafe.Sizeof(vv) == (ptrSize * 4) {
offsetScalar = ptrSize * 2
offsetFlag = ptrSize * 3
}
// Commit 90a7c3c86944 changed the flag positions such that the low
// order bits are the kind. This code extracts the kind from the flags
// field and ensures it's the correct type. When it's not, the flag
// order has been changed to the newer format, so the flags are updated
// accordingly.
upf := unsafe.Pointer(uintptr(unsafe.Pointer(&vv)) + offsetFlag)
upfv := *(*uintptr)(upf)
flagKindMask := uintptr((1<<flagKindWidth - 1) << flagKindShift)
if (upfv&flagKindMask)>>flagKindShift != uintptr(reflect.Int) {
flagKindShift = 0
flagRO = 1 << 5
flagIndir = 1 << 6
// Commit adf9b30e5594 modified the flags to separate the
// flagRO flag into two bits which specifies whether or not the
// field is embedded. This causes flagIndir to move over a bit
// and means that flagRO is the combination of either of the
// original flagRO bit and the new bit.
//
// This code detects the change by extracting what used to be
// the indirect bit to ensure it's set. When it's not, the flag
// order has been changed to the newer format, so the flags are
// updated accordingly.
if upfv&flagIndir == 0 {
flagRO = 3 << 5
flagIndir = 1 << 7
}
}
}
// unsafeReflectValue converts the passed reflect.Value into a one that bypasses
// the typical safety restrictions preventing access to unaddressable and
// unexported data. It works by digging the raw pointer to the underlying
// value out of the protected value and generating a new unprotected (unsafe)
// reflect.Value to it.
//
// This allows us to check for implementations of the Stringer and error
// interfaces to be used for pretty printing ordinarily unaddressable and
// inaccessible values such as unexported struct fields.
func unsafeReflectValue(v reflect.Value) (rv reflect.Value) {
indirects := 1
vt := v.Type()
upv := unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetPtr)
rvf := *(*uintptr)(unsafe.Pointer(uintptr(unsafe.Pointer(&v)) + offsetFlag))
if rvf&flagIndir != 0 {
vt = reflect.PtrTo(v.Type())
indirects++
} else if offsetScalar != 0 {
// The value is in the scalar field when it's not one of the
// reference types.
switch vt.Kind() {
case reflect.Uintptr:
case reflect.Chan:
case reflect.Func:
case reflect.Map:
case reflect.Ptr:
case reflect.UnsafePointer:
default:
upv = unsafe.Pointer(uintptr(unsafe.Pointer(&v)) +
offsetScalar)
}
}
pv := reflect.NewAt(vt, upv)
rv = pv
for i := 0; i < indirects; i++ {
rv = rv.Elem()
}
return rv
}

View file

@ -0,0 +1,38 @@
// Copyright (c) 2015-2016 Dave Collins <dave@davec.name>
//
// Permission to use, copy, modify, and distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
// NOTE: Due to the following build constraints, this file will only be compiled
// when the code is running on Google App Engine, compiled by GopherJS, or
// "-tags safe" is added to the go build command line. The "disableunsafe"
// tag is deprecated and thus should not be used.
// +build js appengine safe disableunsafe
package spew
import "reflect"
const (
// UnsafeDisabled is a build-time constant which specifies whether or
// not access to the unsafe package is available.
UnsafeDisabled = true
)
// unsafeReflectValue typically converts the passed reflect.Value into a one
// that bypasses the typical safety restrictions preventing access to
// unaddressable and unexported data. However, doing this relies on access to
// the unsafe package. This is a stub version which simply returns the passed
// reflect.Value when the unsafe package is not available.
func unsafeReflectValue(v reflect.Value) reflect.Value {
return v
}

View file

@ -0,0 +1,341 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"reflect"
"sort"
"strconv"
)
// Some constants in the form of bytes to avoid string overhead. This mirrors
// the technique used in the fmt package.
var (
panicBytes = []byte("(PANIC=")
plusBytes = []byte("+")
iBytes = []byte("i")
trueBytes = []byte("true")
falseBytes = []byte("false")
interfaceBytes = []byte("(interface {})")
commaNewlineBytes = []byte(",\n")
newlineBytes = []byte("\n")
openBraceBytes = []byte("{")
openBraceNewlineBytes = []byte("{\n")
closeBraceBytes = []byte("}")
asteriskBytes = []byte("*")
colonBytes = []byte(":")
colonSpaceBytes = []byte(": ")
openParenBytes = []byte("(")
closeParenBytes = []byte(")")
spaceBytes = []byte(" ")
pointerChainBytes = []byte("->")
nilAngleBytes = []byte("<nil>")
maxNewlineBytes = []byte("<max depth reached>\n")
maxShortBytes = []byte("<max>")
circularBytes = []byte("<already shown>")
circularShortBytes = []byte("<shown>")
invalidAngleBytes = []byte("<invalid>")
openBracketBytes = []byte("[")
closeBracketBytes = []byte("]")
percentBytes = []byte("%")
precisionBytes = []byte(".")
openAngleBytes = []byte("<")
closeAngleBytes = []byte(">")
openMapBytes = []byte("map[")
closeMapBytes = []byte("]")
lenEqualsBytes = []byte("len=")
capEqualsBytes = []byte("cap=")
)
// hexDigits is used to map a decimal value to a hex digit.
var hexDigits = "0123456789abcdef"
// catchPanic handles any panics that might occur during the handleMethods
// calls.
func catchPanic(w io.Writer, v reflect.Value) {
if err := recover(); err != nil {
w.Write(panicBytes)
fmt.Fprintf(w, "%v", err)
w.Write(closeParenBytes)
}
}
// handleMethods attempts to call the Error and String methods on the underlying
// type the passed reflect.Value represents and outputes the result to Writer w.
//
// It handles panics in any called methods by catching and displaying the error
// as the formatted value.
func handleMethods(cs *ConfigState, w io.Writer, v reflect.Value) (handled bool) {
// We need an interface to check if the type implements the error or
// Stringer interface. However, the reflect package won't give us an
// interface on certain things like unexported struct fields in order
// to enforce visibility rules. We use unsafe, when it's available,
// to bypass these restrictions since this package does not mutate the
// values.
if !v.CanInterface() {
if UnsafeDisabled {
return false
}
v = unsafeReflectValue(v)
}
// Choose whether or not to do error and Stringer interface lookups against
// the base type or a pointer to the base type depending on settings.
// Technically calling one of these methods with a pointer receiver can
// mutate the value, however, types which choose to satisify an error or
// Stringer interface with a pointer receiver should not be mutating their
// state inside these interface methods.
if !cs.DisablePointerMethods && !UnsafeDisabled && !v.CanAddr() {
v = unsafeReflectValue(v)
}
if v.CanAddr() {
v = v.Addr()
}
// Is it an error or Stringer?
switch iface := v.Interface().(type) {
case error:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.Error()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.Error()))
return true
case fmt.Stringer:
defer catchPanic(w, v)
if cs.ContinueOnMethod {
w.Write(openParenBytes)
w.Write([]byte(iface.String()))
w.Write(closeParenBytes)
w.Write(spaceBytes)
return false
}
w.Write([]byte(iface.String()))
return true
}
return false
}
// printBool outputs a boolean value as true or false to Writer w.
func printBool(w io.Writer, val bool) {
if val {
w.Write(trueBytes)
} else {
w.Write(falseBytes)
}
}
// printInt outputs a signed integer value to Writer w.
func printInt(w io.Writer, val int64, base int) {
w.Write([]byte(strconv.FormatInt(val, base)))
}
// printUint outputs an unsigned integer value to Writer w.
func printUint(w io.Writer, val uint64, base int) {
w.Write([]byte(strconv.FormatUint(val, base)))
}
// printFloat outputs a floating point value using the specified precision,
// which is expected to be 32 or 64bit, to Writer w.
func printFloat(w io.Writer, val float64, precision int) {
w.Write([]byte(strconv.FormatFloat(val, 'g', -1, precision)))
}
// printComplex outputs a complex value using the specified float precision
// for the real and imaginary parts to Writer w.
func printComplex(w io.Writer, c complex128, floatPrecision int) {
r := real(c)
w.Write(openParenBytes)
w.Write([]byte(strconv.FormatFloat(r, 'g', -1, floatPrecision)))
i := imag(c)
if i >= 0 {
w.Write(plusBytes)
}
w.Write([]byte(strconv.FormatFloat(i, 'g', -1, floatPrecision)))
w.Write(iBytes)
w.Write(closeParenBytes)
}
// printHexPtr outputs a uintptr formatted as hexidecimal with a leading '0x'
// prefix to Writer w.
func printHexPtr(w io.Writer, p uintptr) {
// Null pointer.
num := uint64(p)
if num == 0 {
w.Write(nilAngleBytes)
return
}
// Max uint64 is 16 bytes in hex + 2 bytes for '0x' prefix
buf := make([]byte, 18)
// It's simpler to construct the hex string right to left.
base := uint64(16)
i := len(buf) - 1
for num >= base {
buf[i] = hexDigits[num%base]
num /= base
i--
}
buf[i] = hexDigits[num]
// Add '0x' prefix.
i--
buf[i] = 'x'
i--
buf[i] = '0'
// Strip unused leading bytes.
buf = buf[i:]
w.Write(buf)
}
// valuesSorter implements sort.Interface to allow a slice of reflect.Value
// elements to be sorted.
type valuesSorter struct {
values []reflect.Value
strings []string // either nil or same len and values
cs *ConfigState
}
// newValuesSorter initializes a valuesSorter instance, which holds a set of
// surrogate keys on which the data should be sorted. It uses flags in
// ConfigState to decide if and how to populate those surrogate keys.
func newValuesSorter(values []reflect.Value, cs *ConfigState) sort.Interface {
vs := &valuesSorter{values: values, cs: cs}
if canSortSimply(vs.values[0].Kind()) {
return vs
}
if !cs.DisableMethods {
vs.strings = make([]string, len(values))
for i := range vs.values {
b := bytes.Buffer{}
if !handleMethods(cs, &b, vs.values[i]) {
vs.strings = nil
break
}
vs.strings[i] = b.String()
}
}
if vs.strings == nil && cs.SpewKeys {
vs.strings = make([]string, len(values))
for i := range vs.values {
vs.strings[i] = Sprintf("%#v", vs.values[i].Interface())
}
}
return vs
}
// canSortSimply tests whether a reflect.Kind is a primitive that can be sorted
// directly, or whether it should be considered for sorting by surrogate keys
// (if the ConfigState allows it).
func canSortSimply(kind reflect.Kind) bool {
// This switch parallels valueSortLess, except for the default case.
switch kind {
case reflect.Bool:
return true
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return true
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return true
case reflect.Float32, reflect.Float64:
return true
case reflect.String:
return true
case reflect.Uintptr:
return true
case reflect.Array:
return true
}
return false
}
// Len returns the number of values in the slice. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Len() int {
return len(s.values)
}
// Swap swaps the values at the passed indices. It is part of the
// sort.Interface implementation.
func (s *valuesSorter) Swap(i, j int) {
s.values[i], s.values[j] = s.values[j], s.values[i]
if s.strings != nil {
s.strings[i], s.strings[j] = s.strings[j], s.strings[i]
}
}
// valueSortLess returns whether the first value should sort before the second
// value. It is used by valueSorter.Less as part of the sort.Interface
// implementation.
func valueSortLess(a, b reflect.Value) bool {
switch a.Kind() {
case reflect.Bool:
return !a.Bool() && b.Bool()
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return a.Int() < b.Int()
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
return a.Uint() < b.Uint()
case reflect.Float32, reflect.Float64:
return a.Float() < b.Float()
case reflect.String:
return a.String() < b.String()
case reflect.Uintptr:
return a.Uint() < b.Uint()
case reflect.Array:
// Compare the contents of both arrays.
l := a.Len()
for i := 0; i < l; i++ {
av := a.Index(i)
bv := b.Index(i)
if av.Interface() == bv.Interface() {
continue
}
return valueSortLess(av, bv)
}
}
return a.String() < b.String()
}
// Less returns whether the value at index i should sort before the
// value at index j. It is part of the sort.Interface implementation.
func (s *valuesSorter) Less(i, j int) bool {
if s.strings == nil {
return valueSortLess(s.values[i], s.values[j])
}
return s.strings[i] < s.strings[j]
}
// sortValues is a sort function that handles both native types and any type that
// can be converted to error or Stringer. Other inputs are sorted according to
// their Value.String() value to ensure display stability.
func sortValues(values []reflect.Value, cs *ConfigState) {
if len(values) == 0 {
return
}
sort.Sort(newValuesSorter(values, cs))
}

View file

@ -0,0 +1,306 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"io"
"os"
)
// ConfigState houses the configuration options used by spew to format and
// display values. There is a global instance, Config, that is used to control
// all top-level Formatter and Dump functionality. Each ConfigState instance
// provides methods equivalent to the top-level functions.
//
// The zero value for ConfigState provides no indentation. You would typically
// want to set it to a space or a tab.
//
// Alternatively, you can use NewDefaultConfig to get a ConfigState instance
// with default settings. See the documentation of NewDefaultConfig for default
// values.
type ConfigState struct {
// Indent specifies the string to use for each indentation level. The
// global config instance that all top-level functions use set this to a
// single space by default. If you would like more indentation, you might
// set this to a tab with "\t" or perhaps two spaces with " ".
Indent string
// MaxDepth controls the maximum number of levels to descend into nested
// data structures. The default, 0, means there is no limit.
//
// NOTE: Circular data structures are properly detected, so it is not
// necessary to set this value unless you specifically want to limit deeply
// nested data structures.
MaxDepth int
// DisableMethods specifies whether or not error and Stringer interfaces are
// invoked for types that implement them.
DisableMethods bool
// DisablePointerMethods specifies whether or not to check for and invoke
// error and Stringer interfaces on types which only accept a pointer
// receiver when the current type is not a pointer.
//
// NOTE: This might be an unsafe action since calling one of these methods
// with a pointer receiver could technically mutate the value, however,
// in practice, types which choose to satisify an error or Stringer
// interface with a pointer receiver should not be mutating their state
// inside these interface methods. As a result, this option relies on
// access to the unsafe package, so it will not have any effect when
// running in environments without access to the unsafe package such as
// Google App Engine or with the "safe" build tag specified.
DisablePointerMethods bool
// DisablePointerAddresses specifies whether to disable the printing of
// pointer addresses. This is useful when diffing data structures in tests.
DisablePointerAddresses bool
// DisableCapacities specifies whether to disable the printing of capacities
// for arrays, slices, maps and channels. This is useful when diffing
// data structures in tests.
DisableCapacities bool
// ContinueOnMethod specifies whether or not recursion should continue once
// a custom error or Stringer interface is invoked. The default, false,
// means it will print the results of invoking the custom error or Stringer
// interface and return immediately instead of continuing to recurse into
// the internals of the data type.
//
// NOTE: This flag does not have any effect if method invocation is disabled
// via the DisableMethods or DisablePointerMethods options.
ContinueOnMethod bool
// SortKeys specifies map keys should be sorted before being printed. Use
// this to have a more deterministic, diffable output. Note that only
// native types (bool, int, uint, floats, uintptr and string) and types
// that support the error or Stringer interfaces (if methods are
// enabled) are supported, with other types sorted according to the
// reflect.Value.String() output which guarantees display stability.
SortKeys bool
// SpewKeys specifies that, as a last resort attempt, map keys should
// be spewed to strings and sorted by those strings. This is only
// considered if SortKeys is true.
SpewKeys bool
}
// Config is the active configuration of the top-level functions.
// The configuration can be changed by modifying the contents of spew.Config.
var Config = ConfigState{Indent: " "}
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the formatted string as a value that satisfies error. See NewFormatter
// for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, c.convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, c.convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, c.convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a Formatter interface returned by c.NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, c.convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Print(a ...interface{}) (n int, err error) {
return fmt.Print(c.convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, c.convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Println(a ...interface{}) (n int, err error) {
return fmt.Println(c.convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprint(a ...interface{}) string {
return fmt.Sprint(c.convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a Formatter interface returned by c.NewFormatter. It returns
// the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, c.convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a Formatter interface returned by c.NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(c.NewFormatter(a), c.NewFormatter(b))
func (c *ConfigState) Sprintln(a ...interface{}) string {
return fmt.Sprintln(c.convertArgs(a)...)
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), and %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
c.Printf, c.Println, or c.Printf.
*/
func (c *ConfigState) NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(c, v)
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func (c *ConfigState) Fdump(w io.Writer, a ...interface{}) {
fdump(c, w, a...)
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by modifying the public members
of c. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func (c *ConfigState) Dump(a ...interface{}) {
fdump(c, os.Stdout, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func (c *ConfigState) Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(c, &buf, a...)
return buf.String()
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a spew Formatter interface using
// the ConfigState associated with s.
func (c *ConfigState) convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = newFormatter(c, arg)
}
return formatters
}
// NewDefaultConfig returns a ConfigState with the following default settings.
//
// Indent: " "
// MaxDepth: 0
// DisableMethods: false
// DisablePointerMethods: false
// ContinueOnMethod: false
// SortKeys: false
func NewDefaultConfig() *ConfigState {
return &ConfigState{Indent: " "}
}

View file

@ -0,0 +1,211 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
Package spew implements a deep pretty printer for Go data structures to aid in
debugging.
A quick overview of the additional features spew provides over the built-in
printing facilities for Go data types are as follows:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output (only when using
Dump style)
There are two different approaches spew allows for dumping Go data structures:
* Dump style which prints with newlines, customizable indentation,
and additional debug information such as types and all pointer addresses
used to indirect to the final value
* A custom Formatter interface that integrates cleanly with the standard fmt
package and replaces %v, %+v, %#v, and %#+v to provide inline printing
similar to the default %v while providing the additional functionality
outlined above and passing unsupported format verbs such as %x and %q
along to fmt
Quick Start
This section demonstrates how to quickly get started with spew. See the
sections below for further details on formatting and configuration options.
To dump a variable with full newlines, indentation, type, and pointer
information use Dump, Fdump, or Sdump:
spew.Dump(myVar1, myVar2, ...)
spew.Fdump(someWriter, myVar1, myVar2, ...)
str := spew.Sdump(myVar1, myVar2, ...)
Alternatively, if you would prefer to use format strings with a compacted inline
printing style, use the convenience wrappers Printf, Fprintf, etc with
%v (most compact), %+v (adds pointer addresses), %#v (adds types), or
%#+v (adds types and pointer addresses):
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Fprintf(someWriter, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(someWriter, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
Configuration Options
Configuration of spew is handled by fields in the ConfigState type. For
convenience, all of the top-level functions use a global state available
via the spew.Config global.
It is also possible to create a ConfigState instance that provides methods
equivalent to the top-level functions. This allows concurrent configuration
options. See the ConfigState documentation for more details.
The following configuration options are available:
* Indent
String to use for each indentation level for Dump functions.
It is a single space by default. A popular alternative is "\t".
* MaxDepth
Maximum number of levels to descend into nested data structures.
There is no limit by default.
* DisableMethods
Disables invocation of error and Stringer interface methods.
Method invocation is enabled by default.
* DisablePointerMethods
Disables invocation of error and Stringer interface methods on types
which only accept pointer receivers from non-pointer variables.
Pointer method invocation is enabled by default.
* DisablePointerAddresses
DisablePointerAddresses specifies whether to disable the printing of
pointer addresses. This is useful when diffing data structures in tests.
* DisableCapacities
DisableCapacities specifies whether to disable the printing of
capacities for arrays, slices, maps and channels. This is useful when
diffing data structures in tests.
* ContinueOnMethod
Enables recursion into types after invoking error and Stringer interface
methods. Recursion after method invocation is disabled by default.
* SortKeys
Specifies map keys should be sorted before being printed. Use
this to have a more deterministic, diffable output. Note that
only native types (bool, int, uint, floats, uintptr and string)
and types which implement error or Stringer interfaces are
supported with other types sorted according to the
reflect.Value.String() output which guarantees display
stability. Natural map order is used by default.
* SpewKeys
Specifies that, as a last resort attempt, map keys should be
spewed to strings and sorted by those strings. This is only
considered if SortKeys is true.
Dump Usage
Simply call spew.Dump with a list of variables you want to dump:
spew.Dump(myVar1, myVar2, ...)
You may also call spew.Fdump if you would prefer to output to an arbitrary
io.Writer. For example, to dump to standard error:
spew.Fdump(os.Stderr, myVar1, myVar2, ...)
A third option is to call spew.Sdump to get the formatted output as a string:
str := spew.Sdump(myVar1, myVar2, ...)
Sample Dump Output
See the Dump example for details on the setup of the types and variables being
shown here.
(main.Foo) {
unexportedField: (*main.Bar)(0xf84002e210)({
flag: (main.Flag) flagTwo,
data: (uintptr) <nil>
}),
ExportedField: (map[interface {}]interface {}) (len=1) {
(string) (len=3) "one": (bool) true
}
}
Byte (and uint8) arrays and slices are displayed uniquely like the hexdump -C
command as shown.
([]uint8) (len=32 cap=32) {
00000000 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 |............... |
00000010 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 |!"#$%&'()*+,-./0|
00000020 31 32 |12|
}
Custom Formatter
Spew provides a custom formatter that implements the fmt.Formatter interface
so that it integrates cleanly with standard fmt package printing functions. The
formatter is useful for inline printing of smaller data types similar to the
standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Custom Formatter Usage
The simplest way to make use of the spew custom formatter is to call one of the
convenience functions such as spew.Printf, spew.Println, or spew.Printf. The
functions have syntax you are most likely already familiar with:
spew.Printf("myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Printf("myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
spew.Println(myVar, myVar2)
spew.Fprintf(os.Stderr, "myVar1: %v -- myVar2: %+v", myVar1, myVar2)
spew.Fprintf(os.Stderr, "myVar3: %#v -- myVar4: %#+v", myVar3, myVar4)
See the Index for the full list convenience functions.
Sample Formatter Output
Double pointer to a uint8:
%v: <**>5
%+v: <**>(0xf8400420d0->0xf8400420c8)5
%#v: (**uint8)5
%#+v: (**uint8)(0xf8400420d0->0xf8400420c8)5
Pointer to circular struct with a uint8 field and a pointer to itself:
%v: <*>{1 <*><shown>}
%+v: <*>(0xf84003e260){ui8:1 c:<*>(0xf84003e260)<shown>}
%#v: (*main.circular){ui8:(uint8)1 c:(*main.circular)<shown>}
%#+v: (*main.circular)(0xf84003e260){ui8:(uint8)1 c:(*main.circular)(0xf84003e260)<shown>}
See the Printf example for details on the setup of variables being shown
here.
Errors
Since it is possible for custom Stringer/error interfaces to panic, spew
detects them and handles them internally by printing the panic information
inline with the output. Since spew is intended to provide deep pretty printing
capabilities on structures, it intentionally does not return any errors.
*/
package spew

View file

@ -0,0 +1,509 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"os"
"reflect"
"regexp"
"strconv"
"strings"
)
var (
// uint8Type is a reflect.Type representing a uint8. It is used to
// convert cgo types to uint8 slices for hexdumping.
uint8Type = reflect.TypeOf(uint8(0))
// cCharRE is a regular expression that matches a cgo char.
// It is used to detect character arrays to hexdump them.
cCharRE = regexp.MustCompile("^.*\\._Ctype_char$")
// cUnsignedCharRE is a regular expression that matches a cgo unsigned
// char. It is used to detect unsigned character arrays to hexdump
// them.
cUnsignedCharRE = regexp.MustCompile("^.*\\._Ctype_unsignedchar$")
// cUint8tCharRE is a regular expression that matches a cgo uint8_t.
// It is used to detect uint8_t arrays to hexdump them.
cUint8tCharRE = regexp.MustCompile("^.*\\._Ctype_uint8_t$")
)
// dumpState contains information about the state of a dump operation.
type dumpState struct {
w io.Writer
depth int
pointers map[uintptr]int
ignoreNextType bool
ignoreNextIndent bool
cs *ConfigState
}
// indent performs indentation according to the depth level and cs.Indent
// option.
func (d *dumpState) indent() {
if d.ignoreNextIndent {
d.ignoreNextIndent = false
return
}
d.w.Write(bytes.Repeat([]byte(d.cs.Indent), d.depth))
}
// unpackValue returns values inside of non-nil interfaces when possible.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (d *dumpState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface && !v.IsNil() {
v = v.Elem()
}
return v
}
// dumpPtr handles formatting of pointers by indirecting them as necessary.
func (d *dumpState) dumpPtr(v reflect.Value) {
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range d.pointers {
if depth >= d.depth {
delete(d.pointers, k)
}
}
// Keep list of all dereferenced pointers to show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by dereferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := d.pointers[addr]; ok && pd < d.depth {
cycleFound = true
indirects--
break
}
d.pointers[addr] = d.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type information.
d.w.Write(openParenBytes)
d.w.Write(bytes.Repeat(asteriskBytes, indirects))
d.w.Write([]byte(ve.Type().String()))
d.w.Write(closeParenBytes)
// Display pointer information.
if !d.cs.DisablePointerAddresses && len(pointerChain) > 0 {
d.w.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
d.w.Write(pointerChainBytes)
}
printHexPtr(d.w, addr)
}
d.w.Write(closeParenBytes)
}
// Display dereferenced value.
d.w.Write(openParenBytes)
switch {
case nilFound == true:
d.w.Write(nilAngleBytes)
case cycleFound == true:
d.w.Write(circularBytes)
default:
d.ignoreNextType = true
d.dump(ve)
}
d.w.Write(closeParenBytes)
}
// dumpSlice handles formatting of arrays and slices. Byte (uint8 under
// reflection) arrays and slices are dumped in hexdump -C fashion.
func (d *dumpState) dumpSlice(v reflect.Value) {
// Determine whether this type should be hex dumped or not. Also,
// for types which should be hexdumped, try to use the underlying data
// first, then fall back to trying to convert them to a uint8 slice.
var buf []uint8
doConvert := false
doHexDump := false
numEntries := v.Len()
if numEntries > 0 {
vt := v.Index(0).Type()
vts := vt.String()
switch {
// C types that need to be converted.
case cCharRE.MatchString(vts):
fallthrough
case cUnsignedCharRE.MatchString(vts):
fallthrough
case cUint8tCharRE.MatchString(vts):
doConvert = true
// Try to use existing uint8 slices and fall back to converting
// and copying if that fails.
case vt.Kind() == reflect.Uint8:
// We need an addressable interface to convert the type
// to a byte slice. However, the reflect package won't
// give us an interface on certain things like
// unexported struct fields in order to enforce
// visibility rules. We use unsafe, when available, to
// bypass these restrictions since this package does not
// mutate the values.
vs := v
if !vs.CanInterface() || !vs.CanAddr() {
vs = unsafeReflectValue(vs)
}
if !UnsafeDisabled {
vs = vs.Slice(0, numEntries)
// Use the existing uint8 slice if it can be
// type asserted.
iface := vs.Interface()
if slice, ok := iface.([]uint8); ok {
buf = slice
doHexDump = true
break
}
}
// The underlying data needs to be converted if it can't
// be type asserted to a uint8 slice.
doConvert = true
}
// Copy and convert the underlying type if needed.
if doConvert && vt.ConvertibleTo(uint8Type) {
// Convert and copy each element into a uint8 byte
// slice.
buf = make([]uint8, numEntries)
for i := 0; i < numEntries; i++ {
vv := v.Index(i)
buf[i] = uint8(vv.Convert(uint8Type).Uint())
}
doHexDump = true
}
}
// Hexdump the entire slice as needed.
if doHexDump {
indent := strings.Repeat(d.cs.Indent, d.depth)
str := indent + hex.Dump(buf)
str = strings.Replace(str, "\n", "\n"+indent, -1)
str = strings.TrimRight(str, d.cs.Indent)
d.w.Write([]byte(str))
return
}
// Recursively call dump for each item.
for i := 0; i < numEntries; i++ {
d.dump(d.unpackValue(v.Index(i)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
// dump is the main workhorse for dumping a value. It uses the passed reflect
// value to figure out what kind of object we are dealing with and formats it
// appropriately. It is a recursive function, however circular data structures
// are detected and handled properly.
func (d *dumpState) dump(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
d.w.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
d.indent()
d.dumpPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !d.ignoreNextType {
d.indent()
d.w.Write(openParenBytes)
d.w.Write([]byte(v.Type().String()))
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
d.ignoreNextType = false
// Display length and capacity if the built-in len and cap functions
// work with the value's kind and the len/cap itself is non-zero.
valueLen, valueCap := 0, 0
switch v.Kind() {
case reflect.Array, reflect.Slice, reflect.Chan:
valueLen, valueCap = v.Len(), v.Cap()
case reflect.Map, reflect.String:
valueLen = v.Len()
}
if valueLen != 0 || !d.cs.DisableCapacities && valueCap != 0 {
d.w.Write(openParenBytes)
if valueLen != 0 {
d.w.Write(lenEqualsBytes)
printInt(d.w, int64(valueLen), 10)
}
if !d.cs.DisableCapacities && valueCap != 0 {
if valueLen != 0 {
d.w.Write(spaceBytes)
}
d.w.Write(capEqualsBytes)
printInt(d.w, int64(valueCap), 10)
}
d.w.Write(closeParenBytes)
d.w.Write(spaceBytes)
}
// Call Stringer/error interfaces if they exist and the handle methods flag
// is enabled
if !d.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(d.cs, d.w, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(d.w, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(d.w, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(d.w, v.Uint(), 10)
case reflect.Float32:
printFloat(d.w, v.Float(), 32)
case reflect.Float64:
printFloat(d.w, v.Float(), 64)
case reflect.Complex64:
printComplex(d.w, v.Complex(), 32)
case reflect.Complex128:
printComplex(d.w, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
d.dumpSlice(v)
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.String:
d.w.Write([]byte(strconv.Quote(v.String())))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
d.w.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
d.w.Write(nilAngleBytes)
break
}
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
numEntries := v.Len()
keys := v.MapKeys()
if d.cs.SortKeys {
sortValues(keys, d.cs)
}
for i, key := range keys {
d.dump(d.unpackValue(key))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.MapIndex(key)))
if i < (numEntries - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Struct:
d.w.Write(openBraceNewlineBytes)
d.depth++
if (d.cs.MaxDepth != 0) && (d.depth > d.cs.MaxDepth) {
d.indent()
d.w.Write(maxNewlineBytes)
} else {
vt := v.Type()
numFields := v.NumField()
for i := 0; i < numFields; i++ {
d.indent()
vtf := vt.Field(i)
d.w.Write([]byte(vtf.Name))
d.w.Write(colonSpaceBytes)
d.ignoreNextIndent = true
d.dump(d.unpackValue(v.Field(i)))
if i < (numFields - 1) {
d.w.Write(commaNewlineBytes)
} else {
d.w.Write(newlineBytes)
}
}
}
d.depth--
d.indent()
d.w.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(d.w, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(d.w, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it in case any new
// types are added.
default:
if v.CanInterface() {
fmt.Fprintf(d.w, "%v", v.Interface())
} else {
fmt.Fprintf(d.w, "%v", v.String())
}
}
}
// fdump is a helper function to consolidate the logic from the various public
// methods which take varying writers and config states.
func fdump(cs *ConfigState, w io.Writer, a ...interface{}) {
for _, arg := range a {
if arg == nil {
w.Write(interfaceBytes)
w.Write(spaceBytes)
w.Write(nilAngleBytes)
w.Write(newlineBytes)
continue
}
d := dumpState{w: w, cs: cs}
d.pointers = make(map[uintptr]int)
d.dump(reflect.ValueOf(arg))
d.w.Write(newlineBytes)
}
}
// Fdump formats and displays the passed arguments to io.Writer w. It formats
// exactly the same as Dump.
func Fdump(w io.Writer, a ...interface{}) {
fdump(&Config, w, a...)
}
// Sdump returns a string with the passed arguments formatted exactly the same
// as Dump.
func Sdump(a ...interface{}) string {
var buf bytes.Buffer
fdump(&Config, &buf, a...)
return buf.String()
}
/*
Dump displays the passed parameters to standard out with newlines, customizable
indentation, and additional debug information such as complete types and all
pointer addresses used to indirect to the final value. It provides the
following features over the built-in printing facilities provided by the fmt
package:
* Pointers are dereferenced and followed
* Circular data structures are detected and handled properly
* Custom Stringer/error interfaces are optionally invoked, including
on unexported types
* Custom types which only implement the Stringer/error interfaces via
a pointer receiver are optionally invoked when passing non-pointer
variables
* Byte arrays and slices are dumped like the hexdump -C command which
includes offsets, byte values in hex, and ASCII output
The configuration options are controlled by an exported package global,
spew.Config. See ConfigState for options documentation.
See Fdump if you would prefer dumping to an arbitrary io.Writer or Sdump to
get the formatted result as a string.
*/
func Dump(a ...interface{}) {
fdump(&Config, os.Stdout, a...)
}

View file

@ -0,0 +1,419 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"bytes"
"fmt"
"reflect"
"strconv"
"strings"
)
// supportedFlags is a list of all the character flags supported by fmt package.
const supportedFlags = "0-+# "
// formatState implements the fmt.Formatter interface and contains information
// about the state of a formatting operation. The NewFormatter function can
// be used to get a new Formatter which can be used directly as arguments
// in standard fmt package printing calls.
type formatState struct {
value interface{}
fs fmt.State
depth int
pointers map[uintptr]int
ignoreNextType bool
cs *ConfigState
}
// buildDefaultFormat recreates the original format string without precision
// and width information to pass in to fmt.Sprintf in the case of an
// unrecognized type. Unless new types are added to the language, this
// function won't ever be called.
func (f *formatState) buildDefaultFormat() (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
buf.WriteRune('v')
format = buf.String()
return format
}
// constructOrigFormat recreates the original format string including precision
// and width information to pass along to the standard fmt package. This allows
// automatic deferral of all format strings this package doesn't support.
func (f *formatState) constructOrigFormat(verb rune) (format string) {
buf := bytes.NewBuffer(percentBytes)
for _, flag := range supportedFlags {
if f.fs.Flag(int(flag)) {
buf.WriteRune(flag)
}
}
if width, ok := f.fs.Width(); ok {
buf.WriteString(strconv.Itoa(width))
}
if precision, ok := f.fs.Precision(); ok {
buf.Write(precisionBytes)
buf.WriteString(strconv.Itoa(precision))
}
buf.WriteRune(verb)
format = buf.String()
return format
}
// unpackValue returns values inside of non-nil interfaces when possible and
// ensures that types for values which have been unpacked from an interface
// are displayed when the show types flag is also set.
// This is useful for data types like structs, arrays, slices, and maps which
// can contain varying types packed inside an interface.
func (f *formatState) unpackValue(v reflect.Value) reflect.Value {
if v.Kind() == reflect.Interface {
f.ignoreNextType = false
if !v.IsNil() {
v = v.Elem()
}
}
return v
}
// formatPtr handles formatting of pointers by indirecting them as necessary.
func (f *formatState) formatPtr(v reflect.Value) {
// Display nil if top level pointer is nil.
showTypes := f.fs.Flag('#')
if v.IsNil() && (!showTypes || f.ignoreNextType) {
f.fs.Write(nilAngleBytes)
return
}
// Remove pointers at or below the current depth from map used to detect
// circular refs.
for k, depth := range f.pointers {
if depth >= f.depth {
delete(f.pointers, k)
}
}
// Keep list of all dereferenced pointers to possibly show later.
pointerChain := make([]uintptr, 0)
// Figure out how many levels of indirection there are by derferencing
// pointers and unpacking interfaces down the chain while detecting circular
// references.
nilFound := false
cycleFound := false
indirects := 0
ve := v
for ve.Kind() == reflect.Ptr {
if ve.IsNil() {
nilFound = true
break
}
indirects++
addr := ve.Pointer()
pointerChain = append(pointerChain, addr)
if pd, ok := f.pointers[addr]; ok && pd < f.depth {
cycleFound = true
indirects--
break
}
f.pointers[addr] = f.depth
ve = ve.Elem()
if ve.Kind() == reflect.Interface {
if ve.IsNil() {
nilFound = true
break
}
ve = ve.Elem()
}
}
// Display type or indirection level depending on flags.
if showTypes && !f.ignoreNextType {
f.fs.Write(openParenBytes)
f.fs.Write(bytes.Repeat(asteriskBytes, indirects))
f.fs.Write([]byte(ve.Type().String()))
f.fs.Write(closeParenBytes)
} else {
if nilFound || cycleFound {
indirects += strings.Count(ve.Type().String(), "*")
}
f.fs.Write(openAngleBytes)
f.fs.Write([]byte(strings.Repeat("*", indirects)))
f.fs.Write(closeAngleBytes)
}
// Display pointer information depending on flags.
if f.fs.Flag('+') && (len(pointerChain) > 0) {
f.fs.Write(openParenBytes)
for i, addr := range pointerChain {
if i > 0 {
f.fs.Write(pointerChainBytes)
}
printHexPtr(f.fs, addr)
}
f.fs.Write(closeParenBytes)
}
// Display dereferenced value.
switch {
case nilFound == true:
f.fs.Write(nilAngleBytes)
case cycleFound == true:
f.fs.Write(circularShortBytes)
default:
f.ignoreNextType = true
f.format(ve)
}
}
// format is the main workhorse for providing the Formatter interface. It
// uses the passed reflect value to figure out what kind of object we are
// dealing with and formats it appropriately. It is a recursive function,
// however circular data structures are detected and handled properly.
func (f *formatState) format(v reflect.Value) {
// Handle invalid reflect values immediately.
kind := v.Kind()
if kind == reflect.Invalid {
f.fs.Write(invalidAngleBytes)
return
}
// Handle pointers specially.
if kind == reflect.Ptr {
f.formatPtr(v)
return
}
// Print type information unless already handled elsewhere.
if !f.ignoreNextType && f.fs.Flag('#') {
f.fs.Write(openParenBytes)
f.fs.Write([]byte(v.Type().String()))
f.fs.Write(closeParenBytes)
}
f.ignoreNextType = false
// Call Stringer/error interfaces if they exist and the handle methods
// flag is enabled.
if !f.cs.DisableMethods {
if (kind != reflect.Invalid) && (kind != reflect.Interface) {
if handled := handleMethods(f.cs, f.fs, v); handled {
return
}
}
}
switch kind {
case reflect.Invalid:
// Do nothing. We should never get here since invalid has already
// been handled above.
case reflect.Bool:
printBool(f.fs, v.Bool())
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
printInt(f.fs, v.Int(), 10)
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint:
printUint(f.fs, v.Uint(), 10)
case reflect.Float32:
printFloat(f.fs, v.Float(), 32)
case reflect.Float64:
printFloat(f.fs, v.Float(), 64)
case reflect.Complex64:
printComplex(f.fs, v.Complex(), 32)
case reflect.Complex128:
printComplex(f.fs, v.Complex(), 64)
case reflect.Slice:
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
fallthrough
case reflect.Array:
f.fs.Write(openBracketBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
numEntries := v.Len()
for i := 0; i < numEntries; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(v.Index(i)))
}
}
f.depth--
f.fs.Write(closeBracketBytes)
case reflect.String:
f.fs.Write([]byte(v.String()))
case reflect.Interface:
// The only time we should get here is for nil interfaces due to
// unpackValue calls.
if v.IsNil() {
f.fs.Write(nilAngleBytes)
}
case reflect.Ptr:
// Do nothing. We should never get here since pointers have already
// been handled above.
case reflect.Map:
// nil maps should be indicated as different than empty maps
if v.IsNil() {
f.fs.Write(nilAngleBytes)
break
}
f.fs.Write(openMapBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
keys := v.MapKeys()
if f.cs.SortKeys {
sortValues(keys, f.cs)
}
for i, key := range keys {
if i > 0 {
f.fs.Write(spaceBytes)
}
f.ignoreNextType = true
f.format(f.unpackValue(key))
f.fs.Write(colonBytes)
f.ignoreNextType = true
f.format(f.unpackValue(v.MapIndex(key)))
}
}
f.depth--
f.fs.Write(closeMapBytes)
case reflect.Struct:
numFields := v.NumField()
f.fs.Write(openBraceBytes)
f.depth++
if (f.cs.MaxDepth != 0) && (f.depth > f.cs.MaxDepth) {
f.fs.Write(maxShortBytes)
} else {
vt := v.Type()
for i := 0; i < numFields; i++ {
if i > 0 {
f.fs.Write(spaceBytes)
}
vtf := vt.Field(i)
if f.fs.Flag('+') || f.fs.Flag('#') {
f.fs.Write([]byte(vtf.Name))
f.fs.Write(colonBytes)
}
f.format(f.unpackValue(v.Field(i)))
}
}
f.depth--
f.fs.Write(closeBraceBytes)
case reflect.Uintptr:
printHexPtr(f.fs, uintptr(v.Uint()))
case reflect.UnsafePointer, reflect.Chan, reflect.Func:
printHexPtr(f.fs, v.Pointer())
// There were not any other types at the time this code was written, but
// fall back to letting the default fmt package handle it if any get added.
default:
format := f.buildDefaultFormat()
if v.CanInterface() {
fmt.Fprintf(f.fs, format, v.Interface())
} else {
fmt.Fprintf(f.fs, format, v.String())
}
}
}
// Format satisfies the fmt.Formatter interface. See NewFormatter for usage
// details.
func (f *formatState) Format(fs fmt.State, verb rune) {
f.fs = fs
// Use standard formatting for verbs that are not v.
if verb != 'v' {
format := f.constructOrigFormat(verb)
fmt.Fprintf(fs, format, f.value)
return
}
if f.value == nil {
if fs.Flag('#') {
fs.Write(interfaceBytes)
}
fs.Write(nilAngleBytes)
return
}
f.format(reflect.ValueOf(f.value))
}
// newFormatter is a helper function to consolidate the logic from the various
// public methods which take varying config states.
func newFormatter(cs *ConfigState, v interface{}) fmt.Formatter {
fs := &formatState{value: v, cs: cs}
fs.pointers = make(map[uintptr]int)
return fs
}
/*
NewFormatter returns a custom formatter that satisfies the fmt.Formatter
interface. As a result, it integrates cleanly with standard fmt package
printing functions. The formatter is useful for inline printing of smaller data
types similar to the standard %v format specifier.
The custom formatter only responds to the %v (most compact), %+v (adds pointer
addresses), %#v (adds types), or %#+v (adds types and pointer addresses) verb
combinations. Any other verbs such as %x and %q will be sent to the the
standard fmt package for formatting. In addition, the custom formatter ignores
the width and precision arguments (however they will still work on the format
specifiers not handled by the custom formatter).
Typically this function shouldn't be called directly. It is much easier to make
use of the custom formatter by calling one of the convenience functions such as
Printf, Println, or Fprintf.
*/
func NewFormatter(v interface{}) fmt.Formatter {
return newFormatter(&Config, v)
}

View file

@ -0,0 +1,148 @@
/*
* Copyright (c) 2013-2016 Dave Collins <dave@davec.name>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package spew
import (
"fmt"
"io"
)
// Errorf is a wrapper for fmt.Errorf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the formatted string as a value that satisfies error. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Errorf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Errorf(format string, a ...interface{}) (err error) {
return fmt.Errorf(format, convertArgs(a)...)
}
// Fprint is a wrapper for fmt.Fprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprint(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprint(w, convertArgs(a)...)
}
// Fprintf is a wrapper for fmt.Fprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintf(w, format, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
return fmt.Fprintf(w, format, convertArgs(a)...)
}
// Fprintln is a wrapper for fmt.Fprintln that treats each argument as if it
// passed with a default Formatter interface returned by NewFormatter. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Fprintln(w, spew.NewFormatter(a), spew.NewFormatter(b))
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
return fmt.Fprintln(w, convertArgs(a)...)
}
// Print is a wrapper for fmt.Print that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Print(spew.NewFormatter(a), spew.NewFormatter(b))
func Print(a ...interface{}) (n int, err error) {
return fmt.Print(convertArgs(a)...)
}
// Printf is a wrapper for fmt.Printf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Printf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Printf(format string, a ...interface{}) (n int, err error) {
return fmt.Printf(format, convertArgs(a)...)
}
// Println is a wrapper for fmt.Println that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the number of bytes written and any write error encountered. See
// NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Println(spew.NewFormatter(a), spew.NewFormatter(b))
func Println(a ...interface{}) (n int, err error) {
return fmt.Println(convertArgs(a)...)
}
// Sprint is a wrapper for fmt.Sprint that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprint(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprint(a ...interface{}) string {
return fmt.Sprint(convertArgs(a)...)
}
// Sprintf is a wrapper for fmt.Sprintf that treats each argument as if it were
// passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintf(format, spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintf(format string, a ...interface{}) string {
return fmt.Sprintf(format, convertArgs(a)...)
}
// Sprintln is a wrapper for fmt.Sprintln that treats each argument as if it
// were passed with a default Formatter interface returned by NewFormatter. It
// returns the resulting string. See NewFormatter for formatting details.
//
// This function is shorthand for the following syntax:
//
// fmt.Sprintln(spew.NewFormatter(a), spew.NewFormatter(b))
func Sprintln(a ...interface{}) string {
return fmt.Sprintln(convertArgs(a)...)
}
// convertArgs accepts a slice of arguments and returns a slice of the same
// length with each argument converted to a default spew Formatter interface.
func convertArgs(args []interface{}) (formatters []interface{}) {
formatters = make([]interface{}, len(args))
for index, arg := range args {
formatters[index] = NewFormatter(arg)
}
return formatters
}

View file

@ -0,0 +1,27 @@
Copyright (c) 2013, Patrick Mezard
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View file

@ -0,0 +1,772 @@
// Package difflib is a partial port of Python difflib module.
//
// It provides tools to compare sequences of strings and generate textual diffs.
//
// The following class and functions have been ported:
//
// - SequenceMatcher
//
// - unified_diff
//
// - context_diff
//
// Getting unified diffs was the main goal of the port. Keep in mind this code
// is mostly suitable to output text differences in a human friendly way, there
// are no guarantees generated diffs are consumable by patch(1).
package difflib
import (
"bufio"
"bytes"
"fmt"
"io"
"strings"
)
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func calculateRatio(matches, length int) float64 {
if length > 0 {
return 2.0 * float64(matches) / float64(length)
}
return 1.0
}
type Match struct {
A int
B int
Size int
}
type OpCode struct {
Tag byte
I1 int
I2 int
J1 int
J2 int
}
// SequenceMatcher compares sequence of strings. The basic
// algorithm predates, and is a little fancier than, an algorithm
// published in the late 1980's by Ratcliff and Obershelp under the
// hyperbolic name "gestalt pattern matching". The basic idea is to find
// the longest contiguous matching subsequence that contains no "junk"
// elements (R-O doesn't address junk). The same idea is then applied
// recursively to the pieces of the sequences to the left and to the right
// of the matching subsequence. This does not yield minimal edit
// sequences, but does tend to yield matches that "look right" to people.
//
// SequenceMatcher tries to compute a "human-friendly diff" between two
// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
// longest *contiguous* & junk-free matching subsequence. That's what
// catches peoples' eyes. The Windows(tm) windiff has another interesting
// notion, pairing up elements that appear uniquely in each sequence.
// That, and the method here, appear to yield more intuitive difference
// reports than does diff. This method appears to be the least vulnerable
// to synching up on blocks of "junk lines", though (like blank lines in
// ordinary text files, or maybe "<P>" lines in HTML files). That may be
// because this is the only method of the 3 that has a *concept* of
// "junk" <wink>.
//
// Timing: Basic R-O is cubic time worst case and quadratic time expected
// case. SequenceMatcher is quadratic time for the worst case and has
// expected-case behavior dependent in a complicated way on how many
// elements the sequences have in common; best case time is linear.
type SequenceMatcher struct {
a []string
b []string
b2j map[string][]int
IsJunk func(string) bool
autoJunk bool
bJunk map[string]struct{}
matchingBlocks []Match
fullBCount map[string]int
bPopular map[string]struct{}
opCodes []OpCode
}
func NewMatcher(a, b []string) *SequenceMatcher {
m := SequenceMatcher{autoJunk: true}
m.SetSeqs(a, b)
return &m
}
func NewMatcherWithJunk(a, b []string, autoJunk bool,
isJunk func(string) bool) *SequenceMatcher {
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
m.SetSeqs(a, b)
return &m
}
// Set two sequences to be compared.
func (m *SequenceMatcher) SetSeqs(a, b []string) {
m.SetSeq1(a)
m.SetSeq2(b)
}
// Set the first sequence to be compared. The second sequence to be compared is
// not changed.
//
// SequenceMatcher computes and caches detailed information about the second
// sequence, so if you want to compare one sequence S against many sequences,
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
// sequences.
//
// See also SetSeqs() and SetSeq2().
func (m *SequenceMatcher) SetSeq1(a []string) {
if &a == &m.a {
return
}
m.a = a
m.matchingBlocks = nil
m.opCodes = nil
}
// Set the second sequence to be compared. The first sequence to be compared is
// not changed.
func (m *SequenceMatcher) SetSeq2(b []string) {
if &b == &m.b {
return
}
m.b = b
m.matchingBlocks = nil
m.opCodes = nil
m.fullBCount = nil
m.chainB()
}
func (m *SequenceMatcher) chainB() {
// Populate line -> index mapping
b2j := map[string][]int{}
for i, s := range m.b {
indices := b2j[s]
indices = append(indices, i)
b2j[s] = indices
}
// Purge junk elements
m.bJunk = map[string]struct{}{}
if m.IsJunk != nil {
junk := m.bJunk
for s, _ := range b2j {
if m.IsJunk(s) {
junk[s] = struct{}{}
}
}
for s, _ := range junk {
delete(b2j, s)
}
}
// Purge remaining popular elements
popular := map[string]struct{}{}
n := len(m.b)
if m.autoJunk && n >= 200 {
ntest := n/100 + 1
for s, indices := range b2j {
if len(indices) > ntest {
popular[s] = struct{}{}
}
}
for s, _ := range popular {
delete(b2j, s)
}
}
m.bPopular = popular
m.b2j = b2j
}
func (m *SequenceMatcher) isBJunk(s string) bool {
_, ok := m.bJunk[s]
return ok
}
// Find longest matching block in a[alo:ahi] and b[blo:bhi].
//
// If IsJunk is not defined:
//
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
// alo <= i <= i+k <= ahi
// blo <= j <= j+k <= bhi
// and for all (i',j',k') meeting those conditions,
// k >= k'
// i <= i'
// and if i == i', j <= j'
//
// In other words, of all maximal matching blocks, return one that
// starts earliest in a, and of all those maximal matching blocks that
// start earliest in a, return the one that starts earliest in b.
//
// If IsJunk is defined, first the longest matching block is
// determined as above, but with the additional restriction that no
// junk element appears in the block. Then that block is extended as
// far as possible by matching (only) junk elements on both sides. So
// the resulting block never matches on junk except as identical junk
// happens to be adjacent to an "interesting" match.
//
// If no blocks match, return (alo, blo, 0).
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
// CAUTION: stripping common prefix or suffix would be incorrect.
// E.g.,
// ab
// acab
// Longest matching block is "ab", but if common prefix is
// stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
// strip, so ends up claiming that ab is changed to acab by
// inserting "ca" in the middle. That's minimal but unintuitive:
// "it's obvious" that someone inserted "ac" at the front.
// Windiff ends up at the same place as diff, but by pairing up
// the unique 'b's and then matching the first two 'a's.
besti, bestj, bestsize := alo, blo, 0
// find longest junk-free match
// during an iteration of the loop, j2len[j] = length of longest
// junk-free match ending with a[i-1] and b[j]
j2len := map[int]int{}
for i := alo; i != ahi; i++ {
// look at all instances of a[i] in b; note that because
// b2j has no junk keys, the loop is skipped if a[i] is junk
newj2len := map[int]int{}
for _, j := range m.b2j[m.a[i]] {
// a[i] matches b[j]
if j < blo {
continue
}
if j >= bhi {
break
}
k := j2len[j-1] + 1
newj2len[j] = k
if k > bestsize {
besti, bestj, bestsize = i-k+1, j-k+1, k
}
}
j2len = newj2len
}
// Extend the best by non-junk elements on each end. In particular,
// "popular" non-junk elements aren't in b2j, which greatly speeds
// the inner loop above, but also means "the best" match so far
// doesn't contain any junk *or* popular non-junk elements.
for besti > alo && bestj > blo && !m.isBJunk(m.b[bestj-1]) &&
m.a[besti-1] == m.b[bestj-1] {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
!m.isBJunk(m.b[bestj+bestsize]) &&
m.a[besti+bestsize] == m.b[bestj+bestsize] {
bestsize += 1
}
// Now that we have a wholly interesting match (albeit possibly
// empty!), we may as well suck up the matching junk on each
// side of it too. Can't think of a good reason not to, and it
// saves post-processing the (possibly considerable) expense of
// figuring out what to do with it. In the case of an empty
// interesting match, this is clearly the right thing to do,
// because no other kind of match is possible in the regions.
for besti > alo && bestj > blo && m.isBJunk(m.b[bestj-1]) &&
m.a[besti-1] == m.b[bestj-1] {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
m.isBJunk(m.b[bestj+bestsize]) &&
m.a[besti+bestsize] == m.b[bestj+bestsize] {
bestsize += 1
}
return Match{A: besti, B: bestj, Size: bestsize}
}
// Return list of triples describing matching subsequences.
//
// Each triple is of the form (i, j, n), and means that
// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
// adjacent triples in the list, and the second is not the last triple in the
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
// adjacent equal blocks.
//
// The last triple is a dummy, (len(a), len(b), 0), and is the only
// triple with n==0.
func (m *SequenceMatcher) GetMatchingBlocks() []Match {
if m.matchingBlocks != nil {
return m.matchingBlocks
}
var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
match := m.findLongestMatch(alo, ahi, blo, bhi)
i, j, k := match.A, match.B, match.Size
if match.Size > 0 {
if alo < i && blo < j {
matched = matchBlocks(alo, i, blo, j, matched)
}
matched = append(matched, match)
if i+k < ahi && j+k < bhi {
matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
}
}
return matched
}
matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
// It's possible that we have adjacent equal blocks in the
// matching_blocks list now.
nonAdjacent := []Match{}
i1, j1, k1 := 0, 0, 0
for _, b := range matched {
// Is this block adjacent to i1, j1, k1?
i2, j2, k2 := b.A, b.B, b.Size
if i1+k1 == i2 && j1+k1 == j2 {
// Yes, so collapse them -- this just increases the length of
// the first block by the length of the second, and the first
// block so lengthened remains the block to compare against.
k1 += k2
} else {
// Not adjacent. Remember the first block (k1==0 means it's
// the dummy we started with), and make the second block the
// new block to compare against.
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
i1, j1, k1 = i2, j2, k2
}
}
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
m.matchingBlocks = nonAdjacent
return m.matchingBlocks
}
// Return list of 5-tuples describing how to turn a into b.
//
// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
// tuple preceding it, and likewise for j1 == the previous j2.
//
// The tags are characters, with these meanings:
//
// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
//
// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
//
// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
//
// 'e' (equal): a[i1:i2] == b[j1:j2]
func (m *SequenceMatcher) GetOpCodes() []OpCode {
if m.opCodes != nil {
return m.opCodes
}
i, j := 0, 0
matching := m.GetMatchingBlocks()
opCodes := make([]OpCode, 0, len(matching))
for _, m := range matching {
// invariant: we've pumped out correct diffs to change
// a[:i] into b[:j], and the next matching block is
// a[ai:ai+size] == b[bj:bj+size]. So we need to pump
// out a diff to change a[i:ai] into b[j:bj], pump out
// the matching block, and move (i,j) beyond the match
ai, bj, size := m.A, m.B, m.Size
tag := byte(0)
if i < ai && j < bj {
tag = 'r'
} else if i < ai {
tag = 'd'
} else if j < bj {
tag = 'i'
}
if tag > 0 {
opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
}
i, j = ai+size, bj+size
// the list of matching blocks is terminated by a
// sentinel with size 0
if size > 0 {
opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
}
}
m.opCodes = opCodes
return m.opCodes
}
// Isolate change clusters by eliminating ranges with no changes.
//
// Return a generator of groups with up to n lines of context.
// Each group is in the same format as returned by GetOpCodes().
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
if n < 0 {
n = 3
}
codes := m.GetOpCodes()
if len(codes) == 0 {
codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
}
// Fixup leading and trailing groups if they show no changes.
if codes[0].Tag == 'e' {
c := codes[0]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
}
if codes[len(codes)-1].Tag == 'e' {
c := codes[len(codes)-1]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
}
nn := n + n
groups := [][]OpCode{}
group := []OpCode{}
for _, c := range codes {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
// End the current group and start a new one whenever
// there is a large range with no changes.
if c.Tag == 'e' && i2-i1 > nn {
group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
j1, min(j2, j1+n)})
groups = append(groups, group)
group = []OpCode{}
i1, j1 = max(i1, i2-n), max(j1, j2-n)
}
group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
}
if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
groups = append(groups, group)
}
return groups
}
// Return a measure of the sequences' similarity (float in [0,1]).
//
// Where T is the total number of elements in both sequences, and
// M is the number of matches, this is 2.0*M / T.
// Note that this is 1 if the sequences are identical, and 0 if
// they have nothing in common.
//
// .Ratio() is expensive to compute if you haven't already computed
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
// want to try .QuickRatio() or .RealQuickRation() first to get an
// upper bound.
func (m *SequenceMatcher) Ratio() float64 {
matches := 0
for _, m := range m.GetMatchingBlocks() {
matches += m.Size
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() relatively quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute.
func (m *SequenceMatcher) QuickRatio() float64 {
// viewing a and b as multisets, set matches to the cardinality
// of their intersection; this counts the number of matches
// without regard to order, so is clearly an upper bound
if m.fullBCount == nil {
m.fullBCount = map[string]int{}
for _, s := range m.b {
m.fullBCount[s] = m.fullBCount[s] + 1
}
}
// avail[x] is the number of times x appears in 'b' less the
// number of times we've seen it in 'a' so far ... kinda
avail := map[string]int{}
matches := 0
for _, s := range m.a {
n, ok := avail[s]
if !ok {
n = m.fullBCount[s]
}
avail[s] = n - 1
if n > 0 {
matches += 1
}
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() very quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute than either .Ratio() or .QuickRatio().
func (m *SequenceMatcher) RealQuickRatio() float64 {
la, lb := len(m.a), len(m.b)
return calculateRatio(min(la, lb), la+lb)
}
// Convert range to the "ed" format
func formatRangeUnified(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 1 {
return fmt.Sprintf("%d", beginning)
}
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
return fmt.Sprintf("%d,%d", beginning, length)
}
// Unified diff parameters
type UnifiedDiff struct {
A []string // First sequence lines
FromFile string // First file name
FromDate string // First file time
B []string // Second sequence lines
ToFile string // Second file name
ToDate string // Second file time
Eol string // Headers end of line, defaults to LF
Context int // Number of context lines
}
// Compare two sequences of lines; generate the delta as a unified diff.
//
// Unified diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by 'n' which
// defaults to three.
//
// By default, the diff control lines (those with ---, +++, or @@) are
// created with a trailing newline. This is helpful so that inputs
// created from file.readlines() result in diffs that are suitable for
// file.writelines() since both the inputs and outputs have trailing
// newlines.
//
// For inputs that do not have trailing newlines, set the lineterm
// argument to "" so that the output will be uniformly newline free.
//
// The unidiff format normally has a header for filenames and modification
// times. Any or all of these may be specified using strings for
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
// The modification times are normally expressed in the ISO 8601 format.
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
wf := func(format string, args ...interface{}) error {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
return err
}
ws := func(s string) error {
_, err := buf.WriteString(s)
return err
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
if err != nil {
return err
}
err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
if err != nil {
return err
}
}
}
first, last := g[0], g[len(g)-1]
range1 := formatRangeUnified(first.I1, last.I2)
range2 := formatRangeUnified(first.J1, last.J2)
if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
return err
}
for _, c := range g {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
if c.Tag == 'e' {
for _, line := range diff.A[i1:i2] {
if err := ws(" " + line); err != nil {
return err
}
}
continue
}
if c.Tag == 'r' || c.Tag == 'd' {
for _, line := range diff.A[i1:i2] {
if err := ws("-" + line); err != nil {
return err
}
}
}
if c.Tag == 'r' || c.Tag == 'i' {
for _, line := range diff.B[j1:j2] {
if err := ws("+" + line); err != nil {
return err
}
}
}
}
}
return nil
}
// Like WriteUnifiedDiff but returns the diff a string.
func GetUnifiedDiffString(diff UnifiedDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteUnifiedDiff(w, diff)
return string(w.Bytes()), err
}
// Convert range to the "ed" format.
func formatRangeContext(start, stop int) string {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
if length <= 1 {
return fmt.Sprintf("%d", beginning)
}
return fmt.Sprintf("%d,%d", beginning, beginning+length-1)
}
type ContextDiff UnifiedDiff
// Compare two sequences of lines; generate the delta as a context diff.
//
// Context diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by diff.Context
// which defaults to three.
//
// By default, the diff control lines (those with *** or ---) are
// created with a trailing newline.
//
// For inputs that do not have trailing newlines, set the diff.Eol
// argument to "" so that the output will be uniformly newline free.
//
// The context diff format normally has a header for filenames and
// modification times. Any or all of these may be specified using
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
// The modification times are normally expressed in the ISO 8601 format.
// If not specified, the strings default to blanks.
func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
var diffErr error
wf := func(format string, args ...interface{}) {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
if diffErr == nil && err != nil {
diffErr = err
}
}
ws := func(s string) {
_, err := buf.WriteString(s)
if diffErr == nil && err != nil {
diffErr = err
}
}
if len(diff.Eol) == 0 {
diff.Eol = "\n"
}
prefix := map[byte]string{
'i': "+ ",
'd': "- ",
'r': "! ",
'e': " ",
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
}
}
first, last := g[0], g[len(g)-1]
ws("***************" + diff.Eol)
range1 := formatRangeContext(first.I1, last.I2)
wf("*** %s ****%s", range1, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'd' {
for _, cc := range g {
if cc.Tag == 'i' {
continue
}
for _, line := range diff.A[cc.I1:cc.I2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
range2 := formatRangeContext(first.J1, last.J2)
wf("--- %s ----%s", range2, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'i' {
for _, cc := range g {
if cc.Tag == 'd' {
continue
}
for _, line := range diff.B[cc.J1:cc.J2] {
ws(prefix[cc.Tag] + line)
}
}
break
}
}
}
return diffErr
}
// Like WriteContextDiff but returns the diff a string.
func GetContextDiffString(diff ContextDiff) (string, error) {
w := &bytes.Buffer{}
err := WriteContextDiff(w, diff)
return string(w.Bytes()), err
}
// Split a string on "\n" while preserving them. The output can be used
// as input for UnifiedDiff and ContextDiff structures.
func SplitLines(s string) []string {
lines := strings.SplitAfter(s, "\n")
lines[len(lines)-1] += "\n"
return lines
}

View file

@ -0,0 +1,22 @@
The MIT License
Copyright (c) 2014 Stretchr, Inc.
Copyright (c) 2017-2018 objx contributors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View file

@ -0,0 +1,171 @@
package objx
import (
"fmt"
"regexp"
"strconv"
"strings"
)
// arrayAccesRegexString is the regex used to extract the array number
// from the access path
const arrayAccesRegexString = `^(.+)\[([0-9]+)\]$`
// arrayAccesRegex is the compiled arrayAccesRegexString
var arrayAccesRegex = regexp.MustCompile(arrayAccesRegexString)
// Get gets the value using the specified selector and
// returns it inside a new Obj object.
//
// If it cannot find the value, Get will return a nil
// value inside an instance of Obj.
//
// Get can only operate directly on map[string]interface{} and []interface.
//
// Example
//
// To access the title of the third chapter of the second book, do:
//
// o.Get("books[1].chapters[2].title")
func (m Map) Get(selector string) *Value {
rawObj := access(m, selector, nil, false, false)
return &Value{data: rawObj}
}
// Set sets the value using the specified selector and
// returns the object on which Set was called.
//
// Set can only operate directly on map[string]interface{} and []interface
//
// Example
//
// To set the title of the third chapter of the second book, do:
//
// o.Set("books[1].chapters[2].title","Time to Go")
func (m Map) Set(selector string, value interface{}) Map {
access(m, selector, value, true, false)
return m
}
// access accesses the object using the selector and performs the
// appropriate action.
func access(current, selector, value interface{}, isSet, panics bool) interface{} {
switch selector.(type) {
case int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64:
if array, ok := current.([]interface{}); ok {
index := intFromInterface(selector)
if index >= len(array) {
if panics {
panic(fmt.Sprintf("objx: Index %d is out of range. Slice only contains %d items.", index, len(array)))
}
return nil
}
return array[index]
}
return nil
case string:
selStr := selector.(string)
selSegs := strings.SplitN(selStr, PathSeparator, 2)
thisSel := selSegs[0]
index := -1
var err error
if strings.Contains(thisSel, "[") {
arrayMatches := arrayAccesRegex.FindStringSubmatch(thisSel)
if len(arrayMatches) > 0 {
// Get the key into the map
thisSel = arrayMatches[1]
// Get the index into the array at the key
index, err = strconv.Atoi(arrayMatches[2])
if err != nil {
// This should never happen. If it does, something has gone
// seriously wrong. Panic.
panic("objx: Array index is not an integer. Must use array[int].")
}
}
}
if curMap, ok := current.(Map); ok {
current = map[string]interface{}(curMap)
}
// get the object in question
switch current.(type) {
case map[string]interface{}:
curMSI := current.(map[string]interface{})
if len(selSegs) <= 1 && isSet {
curMSI[thisSel] = value
return nil
}
current = curMSI[thisSel]
default:
current = nil
}
if current == nil && panics {
panic(fmt.Sprintf("objx: '%v' invalid on object.", selector))
}
// do we need to access the item of an array?
if index > -1 {
if array, ok := current.([]interface{}); ok {
if index < len(array) {
current = array[index]
} else {
if panics {
panic(fmt.Sprintf("objx: Index %d is out of range. Slice only contains %d items.", index, len(array)))
}
current = nil
}
}
}
if len(selSegs) > 1 {
current = access(current, selSegs[1], value, isSet, panics)
}
}
return current
}
// intFromInterface converts an interface object to the largest
// representation of an unsigned integer using a type switch and
// assertions
func intFromInterface(selector interface{}) int {
var value int
switch selector.(type) {
case int:
value = selector.(int)
case int8:
value = int(selector.(int8))
case int16:
value = int(selector.(int16))
case int32:
value = int(selector.(int32))
case int64:
value = int(selector.(int64))
case uint:
value = int(selector.(uint))
case uint8:
value = int(selector.(uint8))
case uint16:
value = int(selector.(uint16))
case uint32:
value = int(selector.(uint32))
case uint64:
value = int(selector.(uint64))
default:
panic("objx: array access argument is not an integer type (this should never happen)")
}
return value
}

View file

@ -0,0 +1,13 @@
package objx
const (
// PathSeparator is the character used to separate the elements
// of the keypath.
//
// For example, `location.address.city`
PathSeparator string = "."
// SignatureSeparator is the character that is used to
// separate the Base64 string from the security signature.
SignatureSeparator = "_"
)

View file

@ -0,0 +1,108 @@
package objx
import (
"bytes"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"net/url"
)
// JSON converts the contained object to a JSON string
// representation
func (m Map) JSON() (string, error) {
result, err := json.Marshal(m)
if err != nil {
err = errors.New("objx: JSON encode failed with: " + err.Error())
}
return string(result), err
}
// MustJSON converts the contained object to a JSON string
// representation and panics if there is an error
func (m Map) MustJSON() string {
result, err := m.JSON()
if err != nil {
panic(err.Error())
}
return result
}
// Base64 converts the contained object to a Base64 string
// representation of the JSON string representation
func (m Map) Base64() (string, error) {
var buf bytes.Buffer
jsonData, err := m.JSON()
if err != nil {
return "", err
}
encoder := base64.NewEncoder(base64.StdEncoding, &buf)
_, err = encoder.Write([]byte(jsonData))
if err != nil {
return "", err
}
_ = encoder.Close()
return buf.String(), nil
}
// MustBase64 converts the contained object to a Base64 string
// representation of the JSON string representation and panics
// if there is an error
func (m Map) MustBase64() string {
result, err := m.Base64()
if err != nil {
panic(err.Error())
}
return result
}
// SignedBase64 converts the contained object to a Base64 string
// representation of the JSON string representation and signs it
// using the provided key.
func (m Map) SignedBase64(key string) (string, error) {
base64, err := m.Base64()
if err != nil {
return "", err
}
sig := HashWithKey(base64, key)
return base64 + SignatureSeparator + sig, nil
}
// MustSignedBase64 converts the contained object to a Base64 string
// representation of the JSON string representation and signs it
// using the provided key and panics if there is an error
func (m Map) MustSignedBase64(key string) string {
result, err := m.SignedBase64(key)
if err != nil {
panic(err.Error())
}
return result
}
/*
URL Query
------------------------------------------------
*/
// URLValues creates a url.Values object from an Obj. This
// function requires that the wrapped object be a map[string]interface{}
func (m Map) URLValues() url.Values {
vals := make(url.Values)
for k, v := range m {
//TODO: can this be done without sprintf?
vals.Set(k, fmt.Sprintf("%v", v))
}
return vals
}
// URLQuery gets an encoded URL query representing the given
// Obj. This function requires that the wrapped object be a
// map[string]interface{}
func (m Map) URLQuery() (string, error) {
return m.URLValues().Encode(), nil
}

View file

@ -0,0 +1,66 @@
/*
Objx - Go package for dealing with maps, slices, JSON and other data.
Overview
Objx provides the `objx.Map` type, which is a `map[string]interface{}` that exposes
a powerful `Get` method (among others) that allows you to easily and quickly get
access to data within the map, without having to worry too much about type assertions,
missing data, default values etc.
Pattern
Objx uses a preditable pattern to make access data from within `map[string]interface{}` easy.
Call one of the `objx.` functions to create your `objx.Map` to get going:
m, err := objx.FromJSON(json)
NOTE: Any methods or functions with the `Must` prefix will panic if something goes wrong,
the rest will be optimistic and try to figure things out without panicking.
Use `Get` to access the value you're interested in. You can use dot and array
notation too:
m.Get("places[0].latlng")
Once you have sought the `Value` you're interested in, you can use the `Is*` methods to determine its type.
if m.Get("code").IsStr() { // Your code... }
Or you can just assume the type, and use one of the strong type methods to extract the real value:
m.Get("code").Int()
If there's no value there (or if it's the wrong type) then a default value will be returned,
or you can be explicit about the default value.
Get("code").Int(-1)
If you're dealing with a slice of data as a value, Objx provides many useful methods for iterating,
manipulating and selecting that data. You can find out more by exploring the index below.
Reading data
A simple example of how to use Objx:
// Use MustFromJSON to make an objx.Map from some JSON
m := objx.MustFromJSON(`{"name": "Mat", "age": 30}`)
// Get the details
name := m.Get("name").Str()
age := m.Get("age").Int()
// Get their nickname (or use their name if they don't have one)
nickname := m.Get("nickname").Str(name)
Ranging
Since `objx.Map` is a `map[string]interface{}` you can treat it as such.
For example, to `range` the data, do what you would expect:
m := objx.MustFromJSON(json)
for key, value := range m {
// Your code...
}
*/
package objx

View file

@ -0,0 +1,193 @@
package objx
import (
"encoding/base64"
"encoding/json"
"errors"
"io/ioutil"
"net/url"
"strings"
)
// MSIConvertable is an interface that defines methods for converting your
// custom types to a map[string]interface{} representation.
type MSIConvertable interface {
// MSI gets a map[string]interface{} (msi) representing the
// object.
MSI() map[string]interface{}
}
// Map provides extended functionality for working with
// untyped data, in particular map[string]interface (msi).
type Map map[string]interface{}
// Value returns the internal value instance
func (m Map) Value() *Value {
return &Value{data: m}
}
// Nil represents a nil Map.
var Nil = New(nil)
// New creates a new Map containing the map[string]interface{} in the data argument.
// If the data argument is not a map[string]interface, New attempts to call the
// MSI() method on the MSIConvertable interface to create one.
func New(data interface{}) Map {
if _, ok := data.(map[string]interface{}); !ok {
if converter, ok := data.(MSIConvertable); ok {
data = converter.MSI()
} else {
return nil
}
}
return Map(data.(map[string]interface{}))
}
// MSI creates a map[string]interface{} and puts it inside a new Map.
//
// The arguments follow a key, value pattern.
//
// Panics
//
// Panics if any key argument is non-string or if there are an odd number of arguments.
//
// Example
//
// To easily create Maps:
//
// m := objx.MSI("name", "Mat", "age", 29, "subobj", objx.MSI("active", true))
//
// // creates an Map equivalent to
// m := objx.New(map[string]interface{}{"name": "Mat", "age": 29, "subobj": map[string]interface{}{"active": true}})
func MSI(keyAndValuePairs ...interface{}) Map {
newMap := make(map[string]interface{})
keyAndValuePairsLen := len(keyAndValuePairs)
if keyAndValuePairsLen%2 != 0 {
panic("objx: MSI must have an even number of arguments following the 'key, value' pattern.")
}
for i := 0; i < keyAndValuePairsLen; i = i + 2 {
key := keyAndValuePairs[i]
value := keyAndValuePairs[i+1]
// make sure the key is a string
keyString, keyStringOK := key.(string)
if !keyStringOK {
panic("objx: MSI must follow 'string, interface{}' pattern. " + keyString + " is not a valid key.")
}
newMap[keyString] = value
}
return New(newMap)
}
// ****** Conversion Constructors
// MustFromJSON creates a new Map containing the data specified in the
// jsonString.
//
// Panics if the JSON is invalid.
func MustFromJSON(jsonString string) Map {
o, err := FromJSON(jsonString)
if err != nil {
panic("objx: MustFromJSON failed with error: " + err.Error())
}
return o
}
// FromJSON creates a new Map containing the data specified in the
// jsonString.
//
// Returns an error if the JSON is invalid.
func FromJSON(jsonString string) (Map, error) {
var data interface{}
err := json.Unmarshal([]byte(jsonString), &data)
if err != nil {
return Nil, err
}
return New(data), nil
}
// FromBase64 creates a new Obj containing the data specified
// in the Base64 string.
//
// The string is an encoded JSON string returned by Base64
func FromBase64(base64String string) (Map, error) {
decoder := base64.NewDecoder(base64.StdEncoding, strings.NewReader(base64String))
decoded, err := ioutil.ReadAll(decoder)
if err != nil {
return nil, err
}
return FromJSON(string(decoded))
}
// MustFromBase64 creates a new Obj containing the data specified
// in the Base64 string and panics if there is an error.
//
// The string is an encoded JSON string returned by Base64
func MustFromBase64(base64String string) Map {
result, err := FromBase64(base64String)
if err != nil {
panic("objx: MustFromBase64 failed with error: " + err.Error())
}
return result
}
// FromSignedBase64 creates a new Obj containing the data specified
// in the Base64 string.
//
// The string is an encoded JSON string returned by SignedBase64
func FromSignedBase64(base64String, key string) (Map, error) {
parts := strings.Split(base64String, SignatureSeparator)
if len(parts) != 2 {
return nil, errors.New("objx: Signed base64 string is malformed")
}
sig := HashWithKey(parts[0], key)
if parts[1] != sig {
return nil, errors.New("objx: Signature for base64 data does not match")
}
return FromBase64(parts[0])
}
// MustFromSignedBase64 creates a new Obj containing the data specified
// in the Base64 string and panics if there is an error.
//
// The string is an encoded JSON string returned by Base64
func MustFromSignedBase64(base64String, key string) Map {
result, err := FromSignedBase64(base64String, key)
if err != nil {
panic("objx: MustFromSignedBase64 failed with error: " + err.Error())
}
return result
}
// FromURLQuery generates a new Obj by parsing the specified
// query.
//
// For queries with multiple values, the first value is selected.
func FromURLQuery(query string) (Map, error) {
vals, err := url.ParseQuery(query)
if err != nil {
return nil, err
}
m := make(map[string]interface{})
for k, vals := range vals {
m[k] = vals[0]
}
return New(m), nil
}
// MustFromURLQuery generates a new Obj by parsing the specified
// query.
//
// For queries with multiple values, the first value is selected.
//
// Panics if it encounters an error
func MustFromURLQuery(query string) Map {
o, err := FromURLQuery(query)
if err != nil {
panic("objx: MustFromURLQuery failed with error: " + err.Error())
}
return o
}

View file

@ -0,0 +1,74 @@
package objx
// Exclude returns a new Map with the keys in the specified []string
// excluded.
func (m Map) Exclude(exclude []string) Map {
excluded := make(Map)
for k, v := range m {
var shouldInclude = true
for _, toExclude := range exclude {
if k == toExclude {
shouldInclude = false
break
}
}
if shouldInclude {
excluded[k] = v
}
}
return excluded
}
// Copy creates a shallow copy of the Obj.
func (m Map) Copy() Map {
copied := make(map[string]interface{})
for k, v := range m {
copied[k] = v
}
return New(copied)
}
// Merge blends the specified map with a copy of this map and returns the result.
//
// Keys that appear in both will be selected from the specified map.
// This method requires that the wrapped object be a map[string]interface{}
func (m Map) Merge(merge Map) Map {
return m.Copy().MergeHere(merge)
}
// MergeHere blends the specified map with this map and returns the current map.
//
// Keys that appear in both will be selected from the specified map. The original map
// will be modified. This method requires that
// the wrapped object be a map[string]interface{}
func (m Map) MergeHere(merge Map) Map {
for k, v := range merge {
m[k] = v
}
return m
}
// Transform builds a new Obj giving the transformer a chance
// to change the keys and values as it goes. This method requires that
// the wrapped object be a map[string]interface{}
func (m Map) Transform(transformer func(key string, value interface{}) (string, interface{})) Map {
newMap := make(map[string]interface{})
for k, v := range m {
modifiedKey, modifiedVal := transformer(k, v)
newMap[modifiedKey] = modifiedVal
}
return New(newMap)
}
// TransformKeys builds a new map using the specified key mapping.
//
// Unspecified keys will be unaltered.
// This method requires that the wrapped object be a map[string]interface{}
func (m Map) TransformKeys(mapping map[string]string) Map {
return m.Transform(func(key string, value interface{}) (string, interface{}) {
if newKey, ok := mapping[key]; ok {
return newKey, value
}
return key, value
})
}

View file

@ -0,0 +1,17 @@
package objx
import (
"crypto/sha1"
"encoding/hex"
)
// HashWithKey hashes the specified string using the security
// key.
func HashWithKey(data, key string) string {
hash := sha1.New()
_, err := hash.Write([]byte(data + ":" + key))
if err != nil {
return ""
}
return hex.EncodeToString(hash.Sum(nil))
}

View file

@ -0,0 +1,17 @@
package objx
// Has gets whether there is something at the specified selector
// or not.
//
// If m is nil, Has will always return false.
func (m Map) Has(selector string) bool {
if m == nil {
return false
}
return !m.Get(selector).IsNil()
}
// IsNil gets whether the data is nil or not.
func (v *Value) IsNil() bool {
return v == nil || v.data == nil
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,56 @@
package objx
import (
"fmt"
"strconv"
)
// Value provides methods for extracting interface{} data in various
// types.
type Value struct {
// data contains the raw data being managed by this Value
data interface{}
}
// Data returns the raw data contained by this Value
func (v *Value) Data() interface{} {
return v.data
}
// String returns the value always as a string
func (v *Value) String() string {
switch {
case v.IsStr():
return v.Str()
case v.IsBool():
return strconv.FormatBool(v.Bool())
case v.IsFloat32():
return strconv.FormatFloat(float64(v.Float32()), 'f', -1, 32)
case v.IsFloat64():
return strconv.FormatFloat(v.Float64(), 'f', -1, 64)
case v.IsInt():
return strconv.FormatInt(int64(v.Int()), 10)
case v.IsInt():
return strconv.FormatInt(int64(v.Int()), 10)
case v.IsInt8():
return strconv.FormatInt(int64(v.Int8()), 10)
case v.IsInt16():
return strconv.FormatInt(int64(v.Int16()), 10)
case v.IsInt32():
return strconv.FormatInt(int64(v.Int32()), 10)
case v.IsInt64():
return strconv.FormatInt(v.Int64(), 10)
case v.IsUint():
return strconv.FormatUint(uint64(v.Uint()), 10)
case v.IsUint8():
return strconv.FormatUint(uint64(v.Uint8()), 10)
case v.IsUint16():
return strconv.FormatUint(uint64(v.Uint16()), 10)
case v.IsUint32():
return strconv.FormatUint(uint64(v.Uint32()), 10)
case v.IsUint64():
return strconv.FormatUint(v.Uint64(), 10)
}
return fmt.Sprintf("%#v", v.Data())
}

View file

@ -25,7 +25,6 @@ package v1alpha
import (
"github.com/pkg/errors"
"k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
"github.com/arangodb/k8s-operator/pkg/util/k8sutil"
)
@ -289,126 +288,6 @@ func (s *SyncSpec) SetDefaults(defaultImage string, defaulPullPolicy v1.PullPoli
s.Monitoring.SetDefaults()
}
type ServerGroup int
const (
ServerGroupSingle ServerGroup = 1
ServerGroupAgents ServerGroup = 2
ServerGroupDBServers ServerGroup = 3
ServerGroupCoordinators ServerGroup = 4
ServerGroupSyncMasters ServerGroup = 5
ServerGroupSyncWorkers ServerGroup = 6
)
// AsRole returns the "role" value for the given group.
func (g ServerGroup) AsRole() string {
switch g {
case ServerGroupSingle:
return "single"
case ServerGroupAgents:
return "agent"
case ServerGroupDBServers:
return "dbserver"
case ServerGroupCoordinators:
return "coordinator"
case ServerGroupSyncMasters:
return "syncmaster"
case ServerGroupSyncWorkers:
return "syncworker"
default:
return "?"
}
}
// IsArangod returns true when the groups runs servers of type `arangod`.
func (g ServerGroup) IsArangod() bool {
switch g {
case ServerGroupSingle, ServerGroupAgents, ServerGroupDBServers, ServerGroupCoordinators:
return true
default:
return false
}
}
// IsArangosync returns true when the groups runs servers of type `arangosync`.
func (g ServerGroup) IsArangosync() bool {
switch g {
case ServerGroupSyncMasters, ServerGroupSyncWorkers:
return true
default:
return false
}
}
// ServerGroupSpec contains the specification for all servers in a specific group (e.g. all agents)
type ServerGroupSpec struct {
// Count holds the requested number of servers
Count int `json:"count,omitempty"`
// Args holds additional commandline arguments
Args []string `json:"args,omitempty"`
// StorageClassName specifies the classname for storage of the servers.
StorageClassName string `json:"storageClassName,omitempty"`
// Resources holds resource requests & limits
Resources v1.ResourceRequirements `json:"resource,omitempty"`
}
// Validate the given group spec
func (s ServerGroupSpec) Validate(group ServerGroup, used bool, mode DeploymentMode) error {
if used {
if s.Count < 1 {
return maskAny(errors.Wrapf(ValidationError, "Invalid count value %d. Expected >= 1", s.Count))
}
if s.Count > 1 && group == ServerGroupSingle && mode == DeploymentModeSingle {
return maskAny(errors.Wrapf(ValidationError, "Invalid count value %d. Expected 1", s.Count))
}
} else if s.Count != 0 {
return maskAny(errors.Wrapf(ValidationError, "Invalid count value %d for un-used group. Expected 0", s.Count))
}
return nil
}
// SetDefaults fills in missing defaults
func (s *ServerGroupSpec) SetDefaults(group ServerGroup, used bool, mode DeploymentMode) {
if s.Count == 0 && used {
switch group {
case ServerGroupSingle:
if mode == DeploymentModeSingle {
s.Count = 1 // Single server
} else {
s.Count = 2 // Resilient single
}
default:
s.Count = 3
}
}
if _, found := s.Resources.Requests[v1.ResourceStorage]; !found {
switch group {
case ServerGroupSingle, ServerGroupAgents, ServerGroupDBServers:
if s.Resources.Requests == nil {
s.Resources.Requests = make(map[v1.ResourceName]resource.Quantity)
}
s.Resources.Requests[v1.ResourceStorage] = resource.MustParse("8Gi")
}
}
}
// ResetImmutableFields replaces all immutable fields in the given target with values from the source spec.
// It returns a list of fields that have been reset.
func (s ServerGroupSpec) ResetImmutableFields(group ServerGroup, fieldPrefix string, target *ServerGroupSpec) []string {
var resetFields []string
if group == ServerGroupAgents {
if s.Count != target.Count {
target.Count = s.Count
resetFields = append(resetFields, fieldPrefix+".count")
}
}
if s.StorageClassName != target.StorageClassName {
target.StorageClassName = s.StorageClassName
resetFields = append(resetFields, fieldPrefix+".storageClassName")
}
return resetFields
}
// DeploymentSpec contains the spec part of a ArangoDeployment resource.
type DeploymentSpec struct {
Mode DeploymentMode `json:"mode,omitempty"`
@ -499,22 +378,22 @@ func (s *DeploymentSpec) Validate() error {
if err := s.Sync.Validate(s.Mode); err != nil {
return maskAny(errors.Wrap(err, "spec.sync"))
}
if err := s.Single.Validate(ServerGroupSingle, s.Mode.HasSingleServers(), s.Mode); err != nil {
if err := s.Single.Validate(ServerGroupSingle, s.Mode.HasSingleServers(), s.Mode, s.Environment); err != nil {
return maskAny(err)
}
if err := s.Agents.Validate(ServerGroupAgents, s.Mode.HasAgents(), s.Mode); err != nil {
if err := s.Agents.Validate(ServerGroupAgents, s.Mode.HasAgents(), s.Mode, s.Environment); err != nil {
return maskAny(err)
}
if err := s.DBServers.Validate(ServerGroupDBServers, s.Mode.HasDBServers(), s.Mode); err != nil {
if err := s.DBServers.Validate(ServerGroupDBServers, s.Mode.HasDBServers(), s.Mode, s.Environment); err != nil {
return maskAny(err)
}
if err := s.Coordinators.Validate(ServerGroupCoordinators, s.Mode.HasCoordinators(), s.Mode); err != nil {
if err := s.Coordinators.Validate(ServerGroupCoordinators, s.Mode.HasCoordinators(), s.Mode, s.Environment); err != nil {
return maskAny(err)
}
if err := s.SyncMasters.Validate(ServerGroupSyncMasters, s.Sync.Enabled, s.Mode); err != nil {
if err := s.SyncMasters.Validate(ServerGroupSyncMasters, s.Sync.Enabled, s.Mode, s.Environment); err != nil {
return maskAny(err)
}
if err := s.SyncWorkers.Validate(ServerGroupSyncWorkers, s.Sync.Enabled, s.Mode); err != nil {
if err := s.SyncWorkers.Validate(ServerGroupSyncWorkers, s.Sync.Enabled, s.Mode, s.Environment); err != nil {
return maskAny(err)
}
return nil

View file

@ -0,0 +1,86 @@
//
// DISCLAIMER
//
// Copyright 2018 ArangoDB GmbH, Cologne, Germany
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright holder is ArangoDB GmbH, Cologne, Germany
//
// Author Ewout Prangsma
//
package v1alpha
type ServerGroup int
const (
ServerGroupSingle ServerGroup = 1
ServerGroupAgents ServerGroup = 2
ServerGroupDBServers ServerGroup = 3
ServerGroupCoordinators ServerGroup = 4
ServerGroupSyncMasters ServerGroup = 5
ServerGroupSyncWorkers ServerGroup = 6
)
var (
// AllServerGroups contains a constant list of all known server groups
AllServerGroups = []ServerGroup{
ServerGroupSingle,
ServerGroupAgents,
ServerGroupDBServers,
ServerGroupCoordinators,
ServerGroupSyncMasters,
ServerGroupSyncWorkers,
}
)
// AsRole returns the "role" value for the given group.
func (g ServerGroup) AsRole() string {
switch g {
case ServerGroupSingle:
return "single"
case ServerGroupAgents:
return "agent"
case ServerGroupDBServers:
return "dbserver"
case ServerGroupCoordinators:
return "coordinator"
case ServerGroupSyncMasters:
return "syncmaster"
case ServerGroupSyncWorkers:
return "syncworker"
default:
return "?"
}
}
// IsArangod returns true when the groups runs servers of type `arangod`.
func (g ServerGroup) IsArangod() bool {
switch g {
case ServerGroupSingle, ServerGroupAgents, ServerGroupDBServers, ServerGroupCoordinators:
return true
default:
return false
}
}
// IsArangosync returns true when the groups runs servers of type `arangosync`.
func (g ServerGroup) IsArangosync() bool {
switch g {
case ServerGroupSyncMasters, ServerGroupSyncWorkers:
return true
default:
return false
}
}

View file

@ -0,0 +1,111 @@
//
// DISCLAIMER
//
// Copyright 2018 ArangoDB GmbH, Cologne, Germany
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright holder is ArangoDB GmbH, Cologne, Germany
//
// Author Ewout Prangsma
//
package v1alpha
import (
"github.com/pkg/errors"
"k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
)
// ServerGroupSpec contains the specification for all servers in a specific group (e.g. all agents)
type ServerGroupSpec struct {
// Count holds the requested number of servers
Count int `json:"count,omitempty"`
// Args holds additional commandline arguments
Args []string `json:"args,omitempty"`
// StorageClassName specifies the classname for storage of the servers.
StorageClassName string `json:"storageClassName,omitempty"`
// Resources holds resource requests & limits
Resources v1.ResourceRequirements `json:"resource,omitempty"`
}
// Validate the given group spec
func (s ServerGroupSpec) Validate(group ServerGroup, used bool, mode DeploymentMode, env Environment) error {
if used {
minCount := 1
if env == EnvironmentProduction {
switch group {
case ServerGroupSingle:
if mode == DeploymentModeResilientSingle {
minCount = 2
}
case ServerGroupAgents:
minCount = 3
case ServerGroupDBServers, ServerGroupCoordinators, ServerGroupSyncMasters, ServerGroupSyncWorkers:
minCount = 2
}
}
if s.Count < minCount {
return maskAny(errors.Wrapf(ValidationError, "Invalid count value %d. Expected >= %d", s.Count, minCount))
}
if s.Count > 1 && group == ServerGroupSingle && mode == DeploymentModeSingle {
return maskAny(errors.Wrapf(ValidationError, "Invalid count value %d. Expected 1", s.Count))
}
} else if s.Count != 0 {
return maskAny(errors.Wrapf(ValidationError, "Invalid count value %d for un-used group. Expected 0", s.Count))
}
return nil
}
// SetDefaults fills in missing defaults
func (s *ServerGroupSpec) SetDefaults(group ServerGroup, used bool, mode DeploymentMode) {
if s.Count == 0 && used {
switch group {
case ServerGroupSingle:
if mode == DeploymentModeSingle {
s.Count = 1 // Single server
} else {
s.Count = 2 // Resilient single
}
default:
s.Count = 3
}
}
if _, found := s.Resources.Requests[v1.ResourceStorage]; !found {
switch group {
case ServerGroupSingle, ServerGroupAgents, ServerGroupDBServers:
if s.Resources.Requests == nil {
s.Resources.Requests = make(map[v1.ResourceName]resource.Quantity)
}
s.Resources.Requests[v1.ResourceStorage] = resource.MustParse("8Gi")
}
}
}
// ResetImmutableFields replaces all immutable fields in the given target with values from the source spec.
// It returns a list of fields that have been reset.
func (s ServerGroupSpec) ResetImmutableFields(group ServerGroup, fieldPrefix string, target *ServerGroupSpec) []string {
var resetFields []string
if group == ServerGroupAgents {
if s.Count != target.Count {
target.Count = s.Count
resetFields = append(resetFields, fieldPrefix+".count")
}
}
if s.StorageClassName != target.StorageClassName {
target.StorageClassName = s.StorageClassName
resetFields = append(resetFields, fieldPrefix+".storageClassName")
}
return resetFields
}

View file

@ -0,0 +1,108 @@
//
// DISCLAIMER
//
// Copyright 2018 ArangoDB GmbH, Cologne, Germany
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright holder is ArangoDB GmbH, Cologne, Germany
//
// Author Ewout Prangsma
//
package v1alpha
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestServerGroupSpecValidateCount(t *testing.T) {
// Valid
assert.Nil(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupSingle, true, DeploymentModeSingle, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 0}.Validate(ServerGroupSingle, false, DeploymentModeCluster, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupAgents, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 3}.Validate(ServerGroupAgents, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupAgents, true, DeploymentModeResilientSingle, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 3}.Validate(ServerGroupAgents, true, DeploymentModeResilientSingle, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupDBServers, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 6}.Validate(ServerGroupDBServers, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupCoordinators, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 2}.Validate(ServerGroupCoordinators, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Nil(t, ServerGroupSpec{Count: 3}.Validate(ServerGroupAgents, true, DeploymentModeCluster, EnvironmentProduction))
assert.Nil(t, ServerGroupSpec{Count: 3}.Validate(ServerGroupAgents, true, DeploymentModeResilientSingle, EnvironmentProduction))
assert.Nil(t, ServerGroupSpec{Count: 2}.Validate(ServerGroupDBServers, true, DeploymentModeCluster, EnvironmentProduction))
assert.Nil(t, ServerGroupSpec{Count: 2}.Validate(ServerGroupCoordinators, true, DeploymentModeCluster, EnvironmentProduction))
assert.Nil(t, ServerGroupSpec{Count: 2}.Validate(ServerGroupSyncMasters, true, DeploymentModeCluster, EnvironmentProduction))
assert.Nil(t, ServerGroupSpec{Count: 2}.Validate(ServerGroupSyncWorkers, true, DeploymentModeCluster, EnvironmentProduction))
// Invalid
assert.Error(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupSingle, false, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: 2}.Validate(ServerGroupSingle, true, DeploymentModeSingle, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupSingle, true, DeploymentModeResilientSingle, EnvironmentProduction))
assert.Error(t, ServerGroupSpec{Count: 0}.Validate(ServerGroupAgents, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: 0}.Validate(ServerGroupAgents, true, DeploymentModeResilientSingle, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: 0}.Validate(ServerGroupDBServers, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: 0}.Validate(ServerGroupCoordinators, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: 0}.Validate(ServerGroupSyncMasters, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: 0}.Validate(ServerGroupSyncWorkers, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: -1}.Validate(ServerGroupAgents, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: -1}.Validate(ServerGroupAgents, true, DeploymentModeResilientSingle, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: -1}.Validate(ServerGroupDBServers, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: -1}.Validate(ServerGroupCoordinators, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: -1}.Validate(ServerGroupSyncMasters, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: -1}.Validate(ServerGroupSyncWorkers, true, DeploymentModeCluster, EnvironmentDevelopment))
assert.Error(t, ServerGroupSpec{Count: 2}.Validate(ServerGroupAgents, true, DeploymentModeCluster, EnvironmentProduction))
assert.Error(t, ServerGroupSpec{Count: 2}.Validate(ServerGroupAgents, true, DeploymentModeResilientSingle, EnvironmentProduction))
assert.Error(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupDBServers, true, DeploymentModeCluster, EnvironmentProduction))
assert.Error(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupCoordinators, true, DeploymentModeCluster, EnvironmentProduction))
assert.Error(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupSyncMasters, true, DeploymentModeCluster, EnvironmentProduction))
assert.Error(t, ServerGroupSpec{Count: 1}.Validate(ServerGroupSyncWorkers, true, DeploymentModeCluster, EnvironmentProduction))
}
func TestServerGroupSpecDefault(t *testing.T) {
def := func(spec ServerGroupSpec, group ServerGroup, used bool, mode DeploymentMode) ServerGroupSpec {
spec.SetDefaults(group, used, mode)
return spec
}
assert.Equal(t, 1, def(ServerGroupSpec{}, ServerGroupSingle, true, DeploymentModeSingle).Count)
assert.Equal(t, 2, def(ServerGroupSpec{}, ServerGroupSingle, true, DeploymentModeResilientSingle).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupSingle, false, DeploymentModeCluster).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupAgents, false, DeploymentModeSingle).Count)
assert.Equal(t, 3, def(ServerGroupSpec{}, ServerGroupAgents, true, DeploymentModeResilientSingle).Count)
assert.Equal(t, 3, def(ServerGroupSpec{}, ServerGroupAgents, true, DeploymentModeCluster).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupDBServers, false, DeploymentModeSingle).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupDBServers, false, DeploymentModeResilientSingle).Count)
assert.Equal(t, 3, def(ServerGroupSpec{}, ServerGroupDBServers, true, DeploymentModeCluster).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupCoordinators, false, DeploymentModeSingle).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupCoordinators, false, DeploymentModeResilientSingle).Count)
assert.Equal(t, 3, def(ServerGroupSpec{}, ServerGroupCoordinators, true, DeploymentModeCluster).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupSyncMasters, false, DeploymentModeSingle).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupSyncMasters, false, DeploymentModeResilientSingle).Count)
assert.Equal(t, 3, def(ServerGroupSpec{}, ServerGroupSyncMasters, true, DeploymentModeCluster).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupSyncWorkers, false, DeploymentModeSingle).Count)
assert.Equal(t, 0, def(ServerGroupSpec{}, ServerGroupSyncWorkers, false, DeploymentModeResilientSingle).Count)
assert.Equal(t, 3, def(ServerGroupSpec{}, ServerGroupSyncWorkers, true, DeploymentModeCluster).Count)
for _, g := range AllServerGroups {
assert.Equal(t, 0, len(def(ServerGroupSpec{}, g, true, DeploymentModeSingle).Args))
assert.Equal(t, "", def(ServerGroupSpec{}, g, true, DeploymentModeSingle).StorageClassName)
}
}

View file

@ -0,0 +1,56 @@
//
// DISCLAIMER
//
// Copyright 2018 ArangoDB GmbH, Cologne, Germany
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright holder is ArangoDB GmbH, Cologne, Germany
//
// Author Ewout Prangsma
//
package v1alpha
import (
"testing"
"github.com/stretchr/testify/assert"
)
func TestServerGroupAsRole(t *testing.T) {
assert.Equal(t, "single", ServerGroupSingle.AsRole())
assert.Equal(t, "agent", ServerGroupAgents.AsRole())
assert.Equal(t, "dbserver", ServerGroupDBServers.AsRole())
assert.Equal(t, "coordinator", ServerGroupCoordinators.AsRole())
assert.Equal(t, "syncmaster", ServerGroupSyncMasters.AsRole())
assert.Equal(t, "syncworker", ServerGroupSyncWorkers.AsRole())
}
func TestServerGroupIsArangod(t *testing.T) {
assert.True(t, ServerGroupSingle.IsArangod())
assert.True(t, ServerGroupAgents.IsArangod())
assert.True(t, ServerGroupDBServers.IsArangod())
assert.True(t, ServerGroupCoordinators.IsArangod())
assert.False(t, ServerGroupSyncMasters.IsArangod())
assert.False(t, ServerGroupSyncWorkers.IsArangod())
}
func TestServerGroupIsArangosync(t *testing.T) {
assert.False(t, ServerGroupSingle.IsArangosync())
assert.False(t, ServerGroupAgents.IsArangosync())
assert.False(t, ServerGroupDBServers.IsArangosync())
assert.False(t, ServerGroupCoordinators.IsArangosync())
assert.True(t, ServerGroupSyncMasters.IsArangosync())
assert.True(t, ServerGroupSyncWorkers.IsArangosync())
}