1
0
Fork 0
mirror of https://github.com/dragonflydb/dragonfly.git synced 2024-12-14 11:58:02 +00:00
dragonflydb-dragonfly/tools/balls_bins.py

73 lines
2.3 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python3
"""Simulate throwing balls into bins."""
import numpy as np
import argparse
import matplotlib.pyplot as plt
def simulate_balls_into_bins(balls: int, bins: int, threshold: int, exact, trials=10000):
"""Simulate throwing M balls into N bins for a given number of trials."""
counts = np.zeros(bins, dtype=int)
success = 0
exact_success = 0
deltas = []
for _ in range(trials):
# Reset counts for each trial
counts.fill(0)
# Throw M balls into the bins
bins_seq = np.random.randint(0, bins, balls)
unique, counts_bins = np.unique(bins_seq, return_counts=True)
counts[unique] += counts_bins
deltas.append(counts.max() - counts.min())
# Check if any bin has K or more balls
if np.any(counts >= threshold):
success += 1
if exact is not None:
if np.any(counts == exact):
exact_success += 1
probability = success / trials
return deltas, probability, exact_success / trials
def main():
parser = argparse.ArgumentParser(description="Simulate throwing balls into bins.")
parser.add_argument("--balls", type=int, default=30, help="Number of balls to throw.")
parser.add_argument("--bins", type=int, default=3, help="Number of bins.")
parser.add_argument(
"--high-threshold",
type=int,
default=15,
help="Minimum number of balls for the success condition",
)
parser.add_argument(
"--exact-num", type=int, help="Exact number of balls for the success condition."
)
parser.add_argument(
"--trials", type=int, default=10000, help="Number of trials. Default is 10,000."
)
args = parser.parse_args()
deltas, atleast_p, exact_p = simulate_balls_into_bins(
args.balls, args.bins, args.high_threshold, args.exact_num, args.trials
)
print(f"Probability that at least one bin has {args.high_threshold} or more balls: {atleast_p}")
if args.exact_num is not None:
print(f"Probability that at least one bin has {args.exact_num} balls: {exact_p}")
print(
f"Histogram of the difference between the most and least populated bins for {args.trials} trials"
)
plt.hist(deltas, bins=30, color="steelblue", edgecolor="none")
plt.show()
if __name__ == "__main__":
main()