mirror of
https://github.com/dragonflydb/dragonfly.git
synced 2024-12-14 11:58:02 +00:00
73 lines
2.3 KiB
Python
73 lines
2.3 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
"""Simulate throwing balls into bins."""
|
||
|
|
||
|
import numpy as np
|
||
|
import argparse
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
|
||
|
def simulate_balls_into_bins(balls: int, bins: int, threshold: int, exact, trials=10000):
|
||
|
"""Simulate throwing M balls into N bins for a given number of trials."""
|
||
|
counts = np.zeros(bins, dtype=int)
|
||
|
success = 0
|
||
|
exact_success = 0
|
||
|
deltas = []
|
||
|
|
||
|
for _ in range(trials):
|
||
|
# Reset counts for each trial
|
||
|
counts.fill(0)
|
||
|
|
||
|
# Throw M balls into the bins
|
||
|
bins_seq = np.random.randint(0, bins, balls)
|
||
|
unique, counts_bins = np.unique(bins_seq, return_counts=True)
|
||
|
counts[unique] += counts_bins
|
||
|
deltas.append(counts.max() - counts.min())
|
||
|
# Check if any bin has K or more balls
|
||
|
if np.any(counts >= threshold):
|
||
|
success += 1
|
||
|
if exact is not None:
|
||
|
if np.any(counts == exact):
|
||
|
exact_success += 1
|
||
|
|
||
|
probability = success / trials
|
||
|
return deltas, probability, exact_success / trials
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser(description="Simulate throwing balls into bins.")
|
||
|
parser.add_argument("--balls", type=int, default=30, help="Number of balls to throw.")
|
||
|
parser.add_argument("--bins", type=int, default=3, help="Number of bins.")
|
||
|
parser.add_argument(
|
||
|
"--high-threshold",
|
||
|
type=int,
|
||
|
default=15,
|
||
|
help="Minimum number of balls for the success condition",
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--exact-num", type=int, help="Exact number of balls for the success condition."
|
||
|
)
|
||
|
parser.add_argument(
|
||
|
"--trials", type=int, default=10000, help="Number of trials. Default is 10,000."
|
||
|
)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
deltas, atleast_p, exact_p = simulate_balls_into_bins(
|
||
|
args.balls, args.bins, args.high_threshold, args.exact_num, args.trials
|
||
|
)
|
||
|
|
||
|
print(f"Probability that at least one bin has {args.high_threshold} or more balls: {atleast_p}")
|
||
|
if args.exact_num is not None:
|
||
|
print(f"Probability that at least one bin has {args.exact_num} balls: {exact_p}")
|
||
|
|
||
|
print(
|
||
|
f"Histogram of the difference between the most and least populated bins for {args.trials} trials"
|
||
|
)
|
||
|
plt.hist(deltas, bins=30, color="steelblue", edgecolor="none")
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|