mirror of
https://github.com/postmannen/ctrl.git
synced 2024-12-15 17:51:15 +00:00
738 lines
26 KiB
Go
738 lines
26 KiB
Go
package steward
|
|
|
|
import (
|
|
"bytes"
|
|
"compress/gzip"
|
|
"context"
|
|
"encoding/gob"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"os"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/fxamacker/cbor/v2"
|
|
"github.com/klauspost/compress/zstd"
|
|
"github.com/nats-io/nats.go"
|
|
"github.com/prometheus/client_golang/prometheus"
|
|
)
|
|
|
|
// processKind are either kindSubscriber or kindPublisher, and are
|
|
// used to distinguish the kind of process to spawn and to know
|
|
// the process kind put in the process map.
|
|
type processKind string
|
|
|
|
const (
|
|
processKindSubscriber processKind = "subscriber"
|
|
processKindPublisher processKind = "publisher"
|
|
)
|
|
|
|
// process holds all the logic to handle a message type and it's
|
|
// method, subscription/publishin messages for a subject, and more.
|
|
type process struct {
|
|
messageID int
|
|
// the subject used for the specific process. One process
|
|
// can contain only one sender on a message bus, hence
|
|
// also one subject
|
|
subject Subject
|
|
// Put a node here to be able know the node a process is at.
|
|
// NB: Might not be needed later on.
|
|
node Node
|
|
// The processID for the current process
|
|
processID int
|
|
// errorCh is the same channel the errorKernel uses to
|
|
// read incomming errors. By having this channel available
|
|
// within a process we can send errors to the error kernel,
|
|
// the EK desided what to do, and sends the action about
|
|
// what to do back to the process where the error came from.
|
|
errorCh chan errorEvent
|
|
processKind processKind
|
|
// Who are we allowed to receive from ?
|
|
// allowedReceivers map[Node]struct{}
|
|
// methodsAvailable
|
|
methodsAvailable MethodsAvailable
|
|
// Helper or service function that can do some kind of work
|
|
// for the process.
|
|
// The idea is that this can hold for example the map of the
|
|
// the hello nodes to limit shared resources in the system as
|
|
// a whole for sharing a map from the *server level.
|
|
procFunc procFunc
|
|
// The channel to send a messages to the procFunc go routine.
|
|
// This is typically used within the methodHandler for so we
|
|
// can pass messages between the procFunc and the handler.
|
|
procFuncCh chan Message
|
|
// copy of the configuration from server
|
|
configuration *Configuration
|
|
// The new messages channel copied from *Server
|
|
toRingbufferCh chan<- []subjectAndMessage
|
|
// The structure who holds all processes information
|
|
processes *processes
|
|
// nats connection
|
|
natsConn *nats.Conn
|
|
// natsSubscription returned when calling natsConn.Subscribe
|
|
natsSubscription *nats.Subscription
|
|
// context
|
|
ctx context.Context
|
|
// context cancelFunc
|
|
ctxCancel context.CancelFunc
|
|
// Process name
|
|
processName processName
|
|
|
|
// startup holds the startup functions for starting up publisher
|
|
// or subscriber processes
|
|
startup *startup
|
|
}
|
|
|
|
// prepareNewProcess will set the the provided values and the default
|
|
// values for a process.
|
|
func newProcess(ctx context.Context, metrics *metrics, natsConn *nats.Conn, processes *processes, toRingbufferCh chan<- []subjectAndMessage, configuration *Configuration, subject Subject, errCh chan errorEvent, processKind processKind, procFunc func() error) process {
|
|
// create the initial configuration for a sessions communicating with 1 host process.
|
|
processes.lastProcessID++
|
|
|
|
ctx, cancel := context.WithCancel(ctx)
|
|
|
|
var method Method
|
|
|
|
proc := process{
|
|
messageID: 0,
|
|
subject: subject,
|
|
node: Node(configuration.NodeName),
|
|
processID: processes.lastProcessID,
|
|
errorCh: errCh,
|
|
processKind: processKind,
|
|
methodsAvailable: method.GetMethodsAvailable(),
|
|
toRingbufferCh: toRingbufferCh,
|
|
configuration: configuration,
|
|
processes: processes,
|
|
natsConn: natsConn,
|
|
ctx: ctx,
|
|
ctxCancel: cancel,
|
|
startup: newStartup(metrics),
|
|
}
|
|
|
|
return proc
|
|
}
|
|
|
|
// procFunc is a function that will be started when a worker process
|
|
// is started. If a procFunc is registered when creating a new process
|
|
// the procFunc will be started as a go routine when the process is started,
|
|
// and stopped when the process is stopped.
|
|
//
|
|
// A procFunc can be started both for publishing and subscriber processes.
|
|
//
|
|
// When used with a subscriber process the usecase is most likely to handle
|
|
// some kind of state needed for a request type. The handlers themselves
|
|
// can not hold state since they are only called once per message received,
|
|
// and exits when the message is handled leaving no state behind. With a procfunc
|
|
// we can have a process function running at all times tied to the process, and
|
|
// this function can be able to hold the state needed in a certain scenario.
|
|
//
|
|
// With a subscriber handler you generally take the message in the handler and
|
|
// pass it on to the procFunc by putting it on the procFuncCh<-, and the
|
|
// message can then be read from the procFuncCh inside the procFunc, and we
|
|
// can do some further work on it, for example update registry for metrics that
|
|
// is needed for that specific request type.
|
|
//
|
|
// With a publisher process you can attach a static function that will do some
|
|
// work to a request type, and publish the result.
|
|
//
|
|
// procFunc's can also be used to wrap in other types which we want to
|
|
// work with. An example can be handling of metrics which the message
|
|
// have no notion of, but a procFunc can have that wrapped in from when it was constructed.
|
|
type procFunc func(ctx context.Context, procFuncCh chan Message) error
|
|
|
|
// The purpose of this function is to check if we should start a
|
|
// publisher or subscriber process, where a process is a go routine
|
|
// that will handle either sending or receiving messages on one
|
|
// subject.
|
|
//
|
|
// It will give the process the next available ID, and also add the
|
|
// process to the processes map in the server structure.
|
|
func (p process) spawnWorker(procs *processes, natsConn *nats.Conn) {
|
|
// We use the full name of the subject to identify a unique
|
|
// process. We can do that since a process can only handle
|
|
// one message queue.
|
|
var pn processName
|
|
if p.processKind == processKindPublisher {
|
|
pn = processNameGet(p.subject.name(), processKindPublisher)
|
|
}
|
|
if p.processKind == processKindSubscriber {
|
|
pn = processNameGet(p.subject.name(), processKindSubscriber)
|
|
}
|
|
|
|
processName := processNameGet(p.subject.name(), p.processKind)
|
|
|
|
// Add prometheus metrics for the process.
|
|
p.processes.metrics.promProcessesAllRunning.With(prometheus.Labels{"processName": string(processName)})
|
|
|
|
// Start a publisher worker, which will start a go routine (process)
|
|
// That will take care of all the messages for the subject it owns.
|
|
if p.processKind == processKindPublisher {
|
|
|
|
// If there is a procFunc for the process, start it.
|
|
if p.procFunc != nil {
|
|
// Initialize the channel for communication between the proc and
|
|
// the procFunc.
|
|
p.procFuncCh = make(chan Message)
|
|
|
|
// Start the procFunc in it's own anonymous func so we are able
|
|
// to get the return error.
|
|
go func() {
|
|
err := p.procFunc(p.ctx, p.procFuncCh)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: spawnWorker: start procFunc failed: %v", err)
|
|
p.processes.errorKernel.errSend(p, Message{}, er)
|
|
}
|
|
}()
|
|
}
|
|
|
|
go p.publishMessages(natsConn)
|
|
}
|
|
|
|
// Start a subscriber worker, which will start a go routine (process)
|
|
// That will take care of all the messages for the subject it owns.
|
|
if p.processKind == processKindSubscriber {
|
|
// If there is a procFunc for the process, start it.
|
|
if p.procFunc != nil {
|
|
// Initialize the channel for communication between the proc and
|
|
// the procFunc.
|
|
p.procFuncCh = make(chan Message)
|
|
|
|
// Start the procFunc in it's own anonymous func so we are able
|
|
// to get the return error.
|
|
go func() {
|
|
err := p.procFunc(p.ctx, p.procFuncCh)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: spawnWorker: start procFunc failed: %v", err)
|
|
p.processes.errorKernel.errSend(p, Message{}, er)
|
|
}
|
|
}()
|
|
}
|
|
|
|
p.natsSubscription = p.subscribeMessages()
|
|
}
|
|
|
|
p.processName = pn
|
|
|
|
// Add information about the new process to the started processes map.
|
|
procs.active.mu.Lock()
|
|
procs.active.procNames[pn] = p
|
|
procs.active.mu.Unlock()
|
|
}
|
|
|
|
// messageDeliverNats will create the Nats message with headers and payload.
|
|
// It will also take care of the delivering the message that is converted to
|
|
// gob or cbor format as a nats.Message. It will also take care of checking
|
|
// timeouts and retries specified for the message.
|
|
func (p process) messageDeliverNats(natsMsgPayload []byte, natsMsgHeader nats.Header, natsConn *nats.Conn, message Message) {
|
|
retryAttempts := 0
|
|
|
|
const publishTimer time.Duration = 5
|
|
const subscribeSyncTimer time.Duration = 5
|
|
|
|
// The for loop will run until the message is delivered successfully,
|
|
// or that retries are reached.
|
|
for {
|
|
msg := &nats.Msg{
|
|
Subject: string(p.subject.name()),
|
|
// Subject: fmt.Sprintf("%s.%s.%s", proc.node, "command", "CLICommandRequest"),
|
|
// Structure of the reply message are:
|
|
// <nodename>.<message type>.<method>.reply
|
|
Reply: fmt.Sprintf("%s.reply", p.subject.name()),
|
|
Data: natsMsgPayload,
|
|
Header: natsMsgHeader,
|
|
}
|
|
|
|
//
|
|
|
|
if p.subject.CommandOrEvent == CommandNACK || p.subject.CommandOrEvent == EventNACK {
|
|
err := natsConn.PublishMsg(msg)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: nats publish of hello failed: %v", err)
|
|
log.Printf("%v\n", er)
|
|
return
|
|
}
|
|
p.processes.metrics.promNatsDeliveredTotal.Inc()
|
|
return
|
|
}
|
|
|
|
// The SubscribeSync used in the subscriber, will get messages that
|
|
// are sent after it started subscribing.
|
|
//
|
|
// Create a subscriber for the reply message.
|
|
subReply, err := natsConn.SubscribeSync(msg.Reply)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: nats SubscribeSync failed: failed to create reply message for subject: %v, error: %v", msg.Reply, err)
|
|
// sendErrorLogMessage(p.toRingbufferCh, node(p.node), er)
|
|
log.Printf("%v, waiting %ds before retrying\n", er, subscribeSyncTimer)
|
|
time.Sleep(time.Second * subscribeSyncTimer)
|
|
subReply.Unsubscribe()
|
|
continue
|
|
}
|
|
|
|
// Publish message
|
|
err = natsConn.PublishMsg(msg)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: nats publish failed: %v", err)
|
|
// sendErrorLogMessage(p.toRingbufferCh, node(p.node), er)
|
|
log.Printf("%v, waiting %ds before retrying\n", er, publishTimer)
|
|
time.Sleep(time.Second * publishTimer)
|
|
continue
|
|
}
|
|
|
|
// If the message is an ACK type of message we must check that a
|
|
// reply, and if it is not we don't wait here at all.
|
|
if p.subject.CommandOrEvent == CommandACK || p.subject.CommandOrEvent == EventACK {
|
|
// Wait up until ACKTimeout specified for a reply,
|
|
// continue and resend if no reply received,
|
|
// or exit if max retries for the message reached.
|
|
_, err := subReply.NextMsg(time.Second * time.Duration(message.ACKTimeout))
|
|
if err != nil {
|
|
er := fmt.Errorf("error: ack receive failed: subject=%v: %v", p.subject.name(), err)
|
|
// sendErrorLogMessage(p.toRingbufferCh, p.node, er)
|
|
log.Printf(" ** %v\n", er)
|
|
|
|
// did not receive a reply, decide what to do..
|
|
retryAttempts++
|
|
log.Printf("Retry attempt:%v, retries: %v, ACKTimeout: %v, message.ID: %v\n", retryAttempts, message.Retries, message.ACKTimeout, message.ID)
|
|
|
|
switch {
|
|
//case message.Retries == 0:
|
|
// // 0 indicates unlimited retries
|
|
// continue
|
|
case retryAttempts >= message.Retries:
|
|
// max retries reached
|
|
er := fmt.Errorf("info: toNode: %v, fromNode: %v, subject: %v, methodArgs: %v: max retries reached, check if node is up and running and if it got a subscriber started for the given REQ type", message.ToNode, message.FromNode, msg.Subject, message.MethodArgs)
|
|
|
|
// We do not want to send errorLogs for REQErrorLog type since
|
|
// it will just cause an endless loop.
|
|
if message.Method != REQErrorLog {
|
|
p.processes.errorKernel.infoSend(p, message, er)
|
|
}
|
|
|
|
log.Printf("%v\n", er)
|
|
|
|
subReply.Unsubscribe()
|
|
|
|
p.processes.metrics.promNatsMessagesFailedACKsTotal.Inc()
|
|
return
|
|
|
|
default:
|
|
// none of the above matched, so we've not reached max retries yet
|
|
log.Printf("max retries for message not reached, retrying sending of message with ID %v\n", message.ID)
|
|
p.processes.metrics.promNatsMessagesMissedACKsTotal.Inc()
|
|
continue
|
|
}
|
|
}
|
|
// REMOVED: log.Printf("<--- publisher: received ACK from:%v, for: %v, data: %s\n", message.ToNode, message.Method, msgReply.Data)
|
|
}
|
|
|
|
subReply.Unsubscribe()
|
|
|
|
p.processes.metrics.promNatsDeliveredTotal.Inc()
|
|
|
|
return
|
|
}
|
|
}
|
|
|
|
// messageSubscriberHandler will deserialize the message when a new message is
|
|
// received, check the MessageType field in the message to decide what
|
|
// kind of message it is and then it will check how to handle that message type,
|
|
// and then call the correct method handler for it.
|
|
//
|
|
// This handler function should be started in it's own go routine,so
|
|
// one individual handler is started per message received so we can keep
|
|
// the state of the message being processed, and then reply back to the
|
|
// correct sending process's reply, meaning so we ACK back to the correct
|
|
// publisher.
|
|
func (p process) messageSubscriberHandler(natsConn *nats.Conn, thisNode string, msg *nats.Msg) {
|
|
|
|
// Variable to hold a copy of the message data, so we don't mess with
|
|
// the original data since the original is a pointer value.
|
|
msgData := make([]byte, len(msg.Data))
|
|
copy(msgData, msg.Data)
|
|
|
|
// fmt.Printf(" * DEBUG: header value on subscriberHandler: %v\n", msg.Header)
|
|
|
|
// If compression is used, decompress it to get the gob data. If
|
|
// compression is not used it is the gob encoded data we already
|
|
// got in msgData so we do nothing with it.
|
|
if val, ok := msg.Header["cmp"]; ok {
|
|
// fmt.Printf(" * DEBUG: ok = %v, map = %v, len of val = %v\n", ok, msg.Header, len(val))
|
|
switch val[0] {
|
|
case "z":
|
|
zr, err := zstd.NewReader(nil)
|
|
if err != nil {
|
|
log.Printf("error: zstd NewReader failed: %v\n", err)
|
|
return
|
|
}
|
|
msgData, err = zr.DecodeAll(msg.Data, nil)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: zstd decoding failed: %v", err)
|
|
log.Printf("%v\n", er)
|
|
p.processes.errorKernel.errSend(p, Message{}, er)
|
|
zr.Close()
|
|
return
|
|
}
|
|
|
|
zr.Close()
|
|
|
|
case "g":
|
|
r := bytes.NewReader(msgData)
|
|
gr, err := gzip.NewReader(r)
|
|
if err != nil {
|
|
log.Printf("error: gzip NewReader failed: %v\n", err)
|
|
return
|
|
}
|
|
|
|
b, err := io.ReadAll(gr)
|
|
if err != nil {
|
|
log.Printf("error: gzip ReadAll failed: %v\n", err)
|
|
return
|
|
}
|
|
|
|
gr.Close()
|
|
|
|
msgData = b
|
|
}
|
|
}
|
|
|
|
message := Message{}
|
|
|
|
// Check if serialization is specified.
|
|
// Will default to gob serialization if nothing or non existing value is specified is specified.
|
|
if val, ok := msg.Header["serial"]; ok {
|
|
// fmt.Printf(" * DEBUG: ok = %v, map = %v, len of val = %v\n", ok, msg.Header, len(val))
|
|
switch val[0] {
|
|
case "cbor":
|
|
err := cbor.Unmarshal(msgData, &message)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: cbor decoding failed: %v", err)
|
|
log.Printf("%v\n", er)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
return
|
|
}
|
|
default: // Deaults to gob if no match was found.
|
|
r := bytes.NewReader(msgData)
|
|
gobDec := gob.NewDecoder(r)
|
|
|
|
err := gobDec.Decode(&message)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: gob decoding failed: %v", err)
|
|
log.Printf("%v\n", er)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
return
|
|
}
|
|
}
|
|
|
|
} else {
|
|
// Default to gob if serialization flag was not specified.
|
|
r := bytes.NewReader(msgData)
|
|
gobDec := gob.NewDecoder(r)
|
|
|
|
err := gobDec.Decode(&message)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: gob decoding failed: %v", err)
|
|
log.Printf("%v\n", er)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
return
|
|
}
|
|
}
|
|
|
|
// Send final reply for a relayed message back to the originating node.
|
|
//
|
|
// Check if the previous message was a relayed message, and if true
|
|
// make a copy of the current message where the to field is set to
|
|
// the value of the previous message's RelayFromNode field, so we
|
|
// also can send the a copy of the reply back to where it originated.
|
|
if message.PreviousMessage != nil && message.PreviousMessage.RelayOriginalViaNode != "" {
|
|
|
|
// make a copy of the message
|
|
msgCopy := message
|
|
msgCopy.ToNode = msgCopy.PreviousMessage.RelayFromNode
|
|
|
|
// We set the replyMethod of the initial message.
|
|
// If no RelayReplyMethod was found, we default to the reply
|
|
// method of the previous message.
|
|
switch {
|
|
case msgCopy.PreviousMessage.RelayReplyMethod == "":
|
|
er := fmt.Errorf("error: subscriberHandler: no PreviousMessage.RelayReplyMethod found, defaulting to the reply method of previous message: %v ", msgCopy)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
log.Printf("%v\n", er)
|
|
msgCopy.Method = msgCopy.PreviousMessage.ReplyMethod
|
|
case msgCopy.PreviousMessage.RelayReplyMethod != "":
|
|
msgCopy.Method = msgCopy.PreviousMessage.RelayReplyMethod
|
|
}
|
|
|
|
// Reset the previousMessage relay fields so the message don't loop.
|
|
message.PreviousMessage.RelayViaNode = ""
|
|
message.PreviousMessage.RelayOriginalViaNode = ""
|
|
|
|
// Create a SAM for the msg copy that will be sent back the where the
|
|
// relayed message originated from.
|
|
sam, err := newSubjectAndMessage(msgCopy)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: subscriberHandler: newSubjectAndMessage : %v, message copy: %v", err, msgCopy)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
log.Printf("%v\n", er)
|
|
}
|
|
|
|
p.toRingbufferCh <- []subjectAndMessage{sam}
|
|
}
|
|
|
|
// Check if it is an ACK or NACK message, and do the appropriate action accordingly.
|
|
//
|
|
// With ACK messages Steward will keep the state of the message delivery, and try to
|
|
// resend the message if an ACK is not received within the timeout/retries specified
|
|
// in the message.
|
|
// When a process sends an ACK message, it will stop and wait for the nats-reply message
|
|
// for the time specified in the replyTimeout value. If no reply message is received
|
|
// within the given timeout the publishing process will try to resend the message for
|
|
// number of times specified in the retries field of the Steward message.
|
|
// When receiving a Steward-message with ACK enabled we send a message back the the
|
|
// node where the message originated using the msg.Reply subject field of the nats-message.
|
|
//
|
|
// With NACK messages we do not send a nats reply message, so the message will only be
|
|
// sent from the publisher once, and if it is not delivered it will not be retried.
|
|
switch {
|
|
|
|
// Check for ACK type Commands or Event.
|
|
case p.subject.CommandOrEvent == CommandACK || p.subject.CommandOrEvent == EventACK:
|
|
// Look up the method handler for the specified method.
|
|
mh, ok := p.methodsAvailable.CheckIfExists(message.Method)
|
|
if !ok {
|
|
er := fmt.Errorf("error: subscriberHandler: no such method type: %v", p.subject.CommandOrEvent)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
}
|
|
|
|
var out []byte
|
|
var err error
|
|
|
|
// Call the method handler for the specified method.
|
|
out, err = mh.handler(p, message, thisNode)
|
|
|
|
if err != nil {
|
|
er := fmt.Errorf("error: subscriberHandler: handler method failed: %v", err)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
}
|
|
|
|
// Send a confirmation message back to the publisher
|
|
natsConn.Publish(msg.Reply, out)
|
|
|
|
// Check for NACK type Commands or Event.
|
|
case p.subject.CommandOrEvent == CommandNACK || p.subject.CommandOrEvent == EventNACK:
|
|
mf, ok := p.methodsAvailable.CheckIfExists(message.Method)
|
|
if !ok {
|
|
er := fmt.Errorf("error: subscriberHandler: method type not available: %v", p.subject.CommandOrEvent)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
}
|
|
|
|
_, err := mf.handler(p, message, thisNode)
|
|
|
|
if err != nil {
|
|
er := fmt.Errorf("error: subscriberHandler: handler method failed: %v", err)
|
|
p.processes.errorKernel.errSend(p, message, er)
|
|
}
|
|
|
|
default:
|
|
er := fmt.Errorf("info: did not find that specific type of command or event: %#v", p.subject.CommandOrEvent)
|
|
p.processes.errorKernel.infoSend(p, message, er)
|
|
|
|
}
|
|
}
|
|
|
|
// SubscribeMessage will register the Nats callback function for the specified
|
|
// nats subject. This allows us to receive Nats messages for a given subject
|
|
// on a node.
|
|
func (p process) subscribeMessages() *nats.Subscription {
|
|
subject := string(p.subject.name())
|
|
natsSubscription, err := p.natsConn.Subscribe(subject, func(msg *nats.Msg) {
|
|
//_, err := p.natsConn.Subscribe(subject, func(msg *nats.Msg) {
|
|
|
|
// Start up the subscriber handler.
|
|
go p.messageSubscriberHandler(p.natsConn, p.configuration.NodeName, msg)
|
|
})
|
|
if err != nil {
|
|
log.Printf("error: Subscribe failed: %v\n", err)
|
|
return nil
|
|
}
|
|
|
|
return natsSubscription
|
|
}
|
|
|
|
// publishMessages will do the publishing of messages for one single
|
|
// process. The function should be run as a goroutine, and will run
|
|
// as long as the process it belongs to is running.
|
|
func (p process) publishMessages(natsConn *nats.Conn) {
|
|
var once sync.Once
|
|
|
|
var zEnc *zstd.Encoder
|
|
// Prepare a zstd encoder if enabled. By enabling it here before
|
|
// looping over the messages to send below, we can reuse the zstd
|
|
// encoder for all messages.
|
|
switch p.configuration.Compression {
|
|
case "z": // zstd
|
|
// enc, err := zstd.NewWriter(nil, zstd.WithEncoderLevel(zstd.SpeedBestCompression))
|
|
enc, err := zstd.NewWriter(nil)
|
|
if err != nil {
|
|
log.Printf("error: zstd new encoder failed: %v\n", err)
|
|
os.Exit(1)
|
|
}
|
|
zEnc = enc
|
|
defer zEnc.Close()
|
|
|
|
}
|
|
|
|
// Loop and handle 1 message at a time. If some part of the code
|
|
// fails in the loop we should throw an error and use `continue`
|
|
// to jump back here to the beginning of the loop and continue
|
|
// with the next message.
|
|
for {
|
|
var err error
|
|
var m Message
|
|
|
|
// Wait and read the next message on the message channel, or
|
|
// exit this function if Cancel are received via ctx.
|
|
select {
|
|
case m = <-p.subject.messageCh:
|
|
case <-p.ctx.Done():
|
|
er := fmt.Errorf("info: canceling publisher: %v", p.subject.name())
|
|
//sendErrorLogMessage(p.toRingbufferCh, Node(p.node), er)
|
|
log.Printf("%v\n", er)
|
|
return
|
|
}
|
|
|
|
// Create the initial header, and set values below depending on the
|
|
// various configuration options chosen.
|
|
natsMsgHeader := nats.Header{}
|
|
|
|
// The serialized value of the nats message payload
|
|
var natsMsgPayloadSerialized []byte
|
|
|
|
// encode the message structure into gob binary format before putting
|
|
// it into a nats message.
|
|
// Prepare a gob encoder with a buffer before we start the loop
|
|
switch p.configuration.Serialization {
|
|
case "cbor":
|
|
b, err := cbor.Marshal(m)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: messageDeliverNats: cbor encode message failed: %v", err)
|
|
p.processes.errorKernel.errSend(p, m, er)
|
|
continue
|
|
}
|
|
|
|
natsMsgPayloadSerialized = b
|
|
natsMsgHeader["serial"] = []string{p.configuration.Serialization}
|
|
|
|
default:
|
|
var bufGob bytes.Buffer
|
|
gobEnc := gob.NewEncoder(&bufGob)
|
|
err = gobEnc.Encode(m)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: messageDeliverNats: gob encode message failed: %v", err)
|
|
p.processes.errorKernel.errSend(p, m, er)
|
|
continue
|
|
}
|
|
|
|
natsMsgPayloadSerialized = bufGob.Bytes()
|
|
}
|
|
|
|
// Get the process name so we can look up the process in the
|
|
// processes map, and increment the message counter.
|
|
pn := processNameGet(p.subject.name(), processKindPublisher)
|
|
m.ID = p.messageID
|
|
|
|
// The compressed value of the nats message payload. The content
|
|
// can either be compressed or in it's original form depening on
|
|
// the outcome of the switch below, and if compression were chosen
|
|
// or not.
|
|
var natsMsgPayloadCompressed []byte
|
|
|
|
// Compress the data payload if selected with configuration flag.
|
|
// The compression chosen is later set in the nats msg header when
|
|
// calling p.messageDeliverNats below.
|
|
switch p.configuration.Compression {
|
|
case "z": // zstd
|
|
natsMsgPayloadCompressed = zEnc.EncodeAll(natsMsgPayloadSerialized, nil)
|
|
natsMsgHeader["cmp"] = []string{p.configuration.Compression}
|
|
|
|
zEnc.Reset(nil)
|
|
|
|
case "g": // gzip
|
|
var buf bytes.Buffer
|
|
gzipW := gzip.NewWriter(&buf)
|
|
_, err := gzipW.Write(natsMsgPayloadSerialized)
|
|
if err != nil {
|
|
log.Printf("error: failed to write gzip: %v\n", err)
|
|
gzipW.Close()
|
|
continue
|
|
}
|
|
gzipW.Close()
|
|
|
|
natsMsgPayloadCompressed = buf.Bytes()
|
|
natsMsgHeader["cmp"] = []string{p.configuration.Compression}
|
|
case "": // no compression
|
|
natsMsgPayloadCompressed = natsMsgPayloadSerialized
|
|
|
|
default: // no compression
|
|
// Allways log the error to console.
|
|
er := fmt.Errorf("error: compression type not defined: %v, setting default to zero compression", err)
|
|
log.Printf("%v\n", er)
|
|
|
|
// We only wan't to send the error message to errorCentral once.
|
|
once.Do(func() {
|
|
p.processes.errorKernel.errSend(p, m, er)
|
|
})
|
|
|
|
natsMsgPayloadCompressed = natsMsgPayloadSerialized
|
|
}
|
|
|
|
// Create the Nats message with headers and payload, and do the
|
|
// sending of the message.
|
|
p.messageDeliverNats(natsMsgPayloadCompressed, natsMsgHeader, natsConn, m)
|
|
|
|
// Signaling back to the ringbuffer that we are done with the
|
|
// current message, and it can remove it from the ringbuffer.
|
|
m.done <- struct{}{}
|
|
|
|
// Increment the counter for the next message to be sent.
|
|
p.messageID++
|
|
|
|
{
|
|
p.processes.active.mu.Lock()
|
|
p.processes.active.procNames[pn] = p
|
|
p.processes.active.mu.Unlock()
|
|
}
|
|
|
|
// Handle the error.
|
|
//
|
|
// NOTE: None of the processes above generate an error, so the the
|
|
// if clause will never be triggered. But keeping it here as an example
|
|
// for now for how to handle errors.
|
|
if err != nil {
|
|
// Create an error type which also creates a channel which the
|
|
// errorKernel will send back the action about what to do.
|
|
ep := errorEvent{
|
|
//errorType: logOnly,
|
|
process: p,
|
|
message: m,
|
|
errorActionCh: make(chan errorAction),
|
|
}
|
|
p.errorCh <- ep
|
|
|
|
// Wait for the response action back from the error kernel, and
|
|
// decide what to do. Should we continue, quit, or .... ?
|
|
switch <-ep.errorActionCh {
|
|
case errActionContinue:
|
|
// Just log and continue
|
|
log.Printf("The errAction was continue...so we're continuing\n")
|
|
case errActionKill:
|
|
log.Printf("The errAction was kill...so we're killing\n")
|
|
// ....
|
|
default:
|
|
log.Printf("Info: publishMessages: The errAction was not defined, so we're doing nothing\n")
|
|
}
|
|
}
|
|
}
|
|
}
|