mirror of
https://github.com/postmannen/ctrl.git
synced 2024-12-14 12:37:31 +00:00
986 lines
34 KiB
Go
986 lines
34 KiB
Go
package steward
|
|
|
|
import (
|
|
"bytes"
|
|
"compress/gzip"
|
|
"context"
|
|
"crypto/ed25519"
|
|
"encoding/gob"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"os"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/fxamacker/cbor/v2"
|
|
"github.com/klauspost/compress/zstd"
|
|
"github.com/nats-io/nats.go"
|
|
"github.com/prometheus/client_golang/prometheus"
|
|
// "google.golang.org/protobuf/internal/errors"
|
|
)
|
|
|
|
// processKind are either kindSubscriber or kindPublisher, and are
|
|
// used to distinguish the kind of process to spawn and to know
|
|
// the process kind put in the process map.
|
|
type processKind string
|
|
|
|
const (
|
|
processKindSubscriber processKind = "subscriber"
|
|
processKindPublisher processKind = "publisher"
|
|
)
|
|
|
|
// process holds all the logic to handle a message type and it's
|
|
// method, subscription/publishin messages for a subject, and more.
|
|
type process struct {
|
|
// isSubProcess is used to indentify subprocesses spawned by other processes.
|
|
isSubProcess bool
|
|
// server
|
|
server *server
|
|
// messageID
|
|
messageID int
|
|
// the subject used for the specific process. One process
|
|
// can contain only one sender on a message bus, hence
|
|
// also one subject
|
|
subject Subject
|
|
// Put a node here to be able know the node a process is at.
|
|
// NB: Might not be needed later on.
|
|
node Node
|
|
// The processID for the current process
|
|
processID int
|
|
processKind processKind
|
|
// methodsAvailable
|
|
methodsAvailable MethodsAvailable
|
|
// procFunc is a function that will be started when a worker process
|
|
// is started. If a procFunc is registered when creating a new process
|
|
// the procFunc will be started as a go routine when the process is started,
|
|
// and stopped when the process is stopped.
|
|
//
|
|
// A procFunc can be started both for publishing and subscriber processes.
|
|
//
|
|
// When used with a subscriber process the usecase is most likely to handle
|
|
// some kind of state needed for a request type. The handlers themselves
|
|
// can not hold state since they are only called once per message received,
|
|
// and exits when the message is handled leaving no state behind. With a procfunc
|
|
// we can have a process function running at all times tied to the process, and
|
|
// this function can be able to hold the state needed in a certain scenario.
|
|
//
|
|
// With a subscriber handler you generally take the message in the handler and
|
|
// pass it on to the procFunc by putting it on the procFuncCh<-, and the
|
|
// message can then be read from the procFuncCh inside the procFunc, and we
|
|
// can do some further work on it, for example update registry for metrics that
|
|
// is needed for that specific request type.
|
|
//
|
|
// With a publisher process you can attach a static function that will do some
|
|
// work to a request type, and publish the result.
|
|
//
|
|
// procFunc's can also be used to wrap in other types which we want to
|
|
// work with. An example can be handling of metrics which the message
|
|
// have no notion of, but a procFunc can have that wrapped in from when it was constructed.
|
|
procFunc func(ctx context.Context, procFuncCh chan Message) error
|
|
// The channel to send a messages to the procFunc go routine.
|
|
// This is typically used within the methodHandler for so we
|
|
// can pass messages between the procFunc and the handler.
|
|
procFuncCh chan Message
|
|
// copy of the configuration from server
|
|
configuration *Configuration
|
|
// The new messages channel copied from *Server
|
|
toRingbufferCh chan<- []subjectAndMessage
|
|
// The structure who holds all processes information
|
|
processes *processes
|
|
// nats connection
|
|
natsConn *nats.Conn
|
|
// natsSubscription returned when calling natsConn.Subscribe
|
|
natsSubscription *nats.Subscription
|
|
// context
|
|
ctx context.Context
|
|
// context cancelFunc
|
|
ctxCancel context.CancelFunc
|
|
// Process name
|
|
processName processName
|
|
|
|
// handler is used to directly attach a handler to a process upon
|
|
// creation of the process, like when a process is spawning a sub
|
|
// process like REQCopySrc do. If we're not spawning a sub process
|
|
// and it is a regular process the handler to use is found with the
|
|
// getHandler method
|
|
handler func(proc process, message Message, node string) ([]byte, error)
|
|
|
|
// startup holds the startup functions for starting up publisher
|
|
// or subscriber processes
|
|
startup *startup
|
|
// Signatures
|
|
nodeAuth *nodeAuth
|
|
// centralAuth
|
|
centralAuth *centralAuth
|
|
// errorKernel
|
|
errorKernel *errorKernel
|
|
// metrics
|
|
metrics *metrics
|
|
}
|
|
|
|
// prepareNewProcess will set the the provided values and the default
|
|
// values for a process.
|
|
func newProcess(ctx context.Context, server *server, subject Subject, processKind processKind, procFunc func() error) process {
|
|
// create the initial configuration for a sessions communicating with 1 host process.
|
|
server.processes.mu.Lock()
|
|
server.processes.lastProcessID++
|
|
pid := server.processes.lastProcessID
|
|
server.processes.mu.Unlock()
|
|
|
|
ctx, cancel := context.WithCancel(ctx)
|
|
|
|
var method Method
|
|
|
|
proc := process{
|
|
server: server,
|
|
messageID: 0,
|
|
subject: subject,
|
|
node: Node(server.configuration.NodeName),
|
|
processID: pid,
|
|
processKind: processKind,
|
|
methodsAvailable: method.GetMethodsAvailable(),
|
|
toRingbufferCh: server.toRingBufferCh,
|
|
configuration: server.configuration,
|
|
processes: server.processes,
|
|
natsConn: server.natsConn,
|
|
ctx: ctx,
|
|
ctxCancel: cancel,
|
|
startup: newStartup(server),
|
|
nodeAuth: server.nodeAuth,
|
|
centralAuth: server.centralAuth,
|
|
errorKernel: server.errorKernel,
|
|
metrics: server.metrics,
|
|
}
|
|
|
|
// We use the full name of the subject to identify a unique
|
|
// process. We can do that since a process can only handle
|
|
// one message queue.
|
|
|
|
if proc.processKind == processKindPublisher {
|
|
proc.processName = processNameGet(proc.subject.name(), processKindPublisher)
|
|
}
|
|
if proc.processKind == processKindSubscriber {
|
|
proc.processName = processNameGet(proc.subject.name(), processKindSubscriber)
|
|
}
|
|
|
|
return proc
|
|
}
|
|
|
|
// The purpose of this function is to check if we should start a
|
|
// publisher or subscriber process, where a process is a go routine
|
|
// that will handle either sending or receiving messages on one
|
|
// subject.
|
|
//
|
|
// It will give the process the next available ID, and also add the
|
|
// process to the processes map in the server structure.
|
|
func (p process) spawnWorker() {
|
|
|
|
// processName := processNameGet(p.subject.name(), p.processKind)
|
|
|
|
// Add prometheus metrics for the process.
|
|
p.metrics.promProcessesAllRunning.With(prometheus.Labels{"processName": string(p.processName)})
|
|
|
|
// Start a publisher worker, which will start a go routine (process)
|
|
// That will take care of all the messages for the subject it owns.
|
|
if p.processKind == processKindPublisher {
|
|
|
|
// If there is a procFunc for the process, start it.
|
|
if p.procFunc != nil {
|
|
// Initialize the channel for communication between the proc and
|
|
// the procFunc.
|
|
p.procFuncCh = make(chan Message)
|
|
|
|
// Start the procFunc in it's own anonymous func so we are able
|
|
// to get the return error.
|
|
go func() {
|
|
err := p.procFunc(p.ctx, p.procFuncCh)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: spawnWorker: start procFunc failed: %v", err)
|
|
p.errorKernel.errSend(p, Message{}, er)
|
|
}
|
|
}()
|
|
}
|
|
|
|
go p.publishMessages(p.natsConn)
|
|
}
|
|
|
|
// Start a subscriber worker, which will start a go routine (process)
|
|
// That will take care of all the messages for the subject it owns.
|
|
if p.processKind == processKindSubscriber {
|
|
// If there is a procFunc for the process, start it.
|
|
if p.procFunc != nil {
|
|
// Initialize the channel for communication between the proc and
|
|
// the procFunc.
|
|
p.procFuncCh = make(chan Message)
|
|
|
|
// Start the procFunc in it's own anonymous func so we are able
|
|
// to get the return error.
|
|
go func() {
|
|
err := p.procFunc(p.ctx, p.procFuncCh)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: spawnWorker: start procFunc failed: %v", err)
|
|
p.errorKernel.errSend(p, Message{}, er)
|
|
}
|
|
}()
|
|
}
|
|
|
|
p.natsSubscription = p.subscribeMessages()
|
|
}
|
|
|
|
// Add information about the new process to the started processes map.
|
|
p.processes.active.mu.Lock()
|
|
p.processes.active.procNames[p.processName] = p
|
|
p.processes.active.mu.Unlock()
|
|
|
|
log.Printf("Successfully started process: %v\n", p.processName)
|
|
}
|
|
|
|
var (
|
|
ErrACKSubscribeRetry = errors.New("steward: retrying to subscribe for ack message")
|
|
)
|
|
|
|
// messageDeliverNats will create the Nats message with headers and payload.
|
|
// It will also take care of the delivering the message that is converted to
|
|
// gob or cbor format as a nats.Message. It will also take care of checking
|
|
// timeouts and retries specified for the message.
|
|
func (p process) messageDeliverNats(natsMsgPayload []byte, natsMsgHeader nats.Header, natsConn *nats.Conn, message Message) {
|
|
retryAttempts := 0
|
|
|
|
const publishTimer time.Duration = 5
|
|
const subscribeSyncTimer time.Duration = 5
|
|
|
|
// The for loop will run until the message is delivered successfully,
|
|
// or that retries are reached.
|
|
for {
|
|
msg := &nats.Msg{
|
|
Subject: string(p.subject.name()),
|
|
// Subject: fmt.Sprintf("%s.%s.%s", proc.node, "command", "CLICommandRequest"),
|
|
// Structure of the reply message are:
|
|
// <nodename>.<message type>.<method>.reply
|
|
Reply: fmt.Sprintf("%s.reply", p.subject.name()),
|
|
Data: natsMsgPayload,
|
|
Header: natsMsgHeader,
|
|
}
|
|
|
|
// If it is a NACK message we just deliver the message and return
|
|
// here so we don't create a ACK message and then stop waiting for it.
|
|
if p.subject.Event == EventNACK {
|
|
err := natsConn.PublishMsg(msg)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: nats publish of hello failed: %v", err)
|
|
log.Printf("%v\n", er)
|
|
return
|
|
}
|
|
p.metrics.promNatsDeliveredTotal.Inc()
|
|
|
|
//err = natsConn.Flush()
|
|
//if err != nil {
|
|
// er := fmt.Errorf("error: nats publish flush failed: %v", err)
|
|
// log.Printf("%v\n", er)
|
|
// return
|
|
//}
|
|
|
|
// The remaining logic is for handling ACK messages, so we return here
|
|
// since it was a NACK message, and all or now done.
|
|
|
|
return
|
|
}
|
|
|
|
err := func() error {
|
|
// The SubscribeSync used in the subscriber, will get messages that
|
|
// are sent after it started subscribing.
|
|
//
|
|
// Create a subscriber for the ACK reply message.
|
|
subReply, err := natsConn.SubscribeSync(msg.Reply)
|
|
|
|
defer func() {
|
|
err := subReply.Unsubscribe()
|
|
if err != nil {
|
|
log.Printf("error: nats SubscribeSync: failed when unsubscribing for ACK: %v\n", err)
|
|
}
|
|
}()
|
|
|
|
if err != nil {
|
|
er := fmt.Errorf("error: nats SubscribeSync failed: failed to create reply message for subject: %v, error: %v", msg.Reply, err)
|
|
// sendErrorLogMessage(p.toRingbufferCh, node(p.node), er)
|
|
log.Printf("%v, waiting %ds before retrying\n", er, subscribeSyncTimer)
|
|
|
|
//time.Sleep(time.Second * subscribeSyncTimer)
|
|
// subReply.Unsubscribe()
|
|
|
|
retryAttempts++
|
|
return ErrACKSubscribeRetry
|
|
}
|
|
|
|
// Publish message
|
|
err = natsConn.PublishMsg(msg)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: nats publish failed: %v", err)
|
|
// sendErrorLogMessage(p.toRingbufferCh, node(p.node), er)
|
|
log.Printf("%v, waiting %ds before retrying\n", er, publishTimer)
|
|
time.Sleep(time.Second * publishTimer)
|
|
|
|
return ErrACKSubscribeRetry
|
|
}
|
|
|
|
// Wait up until ACKTimeout specified for a reply,
|
|
// continue and resend if no reply received,
|
|
// or exit if max retries for the message reached.
|
|
//
|
|
// The nats.Msg returned is discarded with '_' since
|
|
// we don't use it.
|
|
_, err = subReply.NextMsg(time.Second * time.Duration(message.ACKTimeout))
|
|
if err != nil {
|
|
if message.RetryWait < 0 {
|
|
message.RetryWait = 0
|
|
}
|
|
|
|
switch {
|
|
case err == nats.ErrNoResponders || err == nats.ErrTimeout:
|
|
er := fmt.Errorf("error: ack receive failed: waiting for %v seconds before retrying: subject=%v: %v", message.RetryWait, p.subject.name(), err)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
|
|
time.Sleep(time.Second * time.Duration(message.RetryWait))
|
|
|
|
// Continue with the rest of the code to check number of retries etc..
|
|
|
|
case err == nats.ErrBadSubscription || err == nats.ErrConnectionClosed:
|
|
er := fmt.Errorf("error: ack receive failed: conneciton closed or bad subscription, will not retry message: subject=%v: %v", p.subject.name(), err)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
|
|
return er
|
|
|
|
default:
|
|
er := fmt.Errorf("error: ack receive failed: the error was not defined, check if nats client have been updated with new error values, and update steward to handle the new error type: subject=%v: %v", p.subject.name(), err)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
|
|
return er
|
|
}
|
|
|
|
// did not receive a reply, decide if we should try to retry sending.
|
|
retryAttempts++
|
|
er := fmt.Errorf("retry attempt:%v, retries: %v, ack timeout: %v, message.ID: %v", retryAttempts, message.Retries, message.ACKTimeout, message.ID)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
|
|
switch {
|
|
//case message.Retries == 0:
|
|
// // 0 indicates unlimited retries
|
|
// continue
|
|
case retryAttempts >= message.Retries:
|
|
// max retries reached
|
|
er := fmt.Errorf("info: toNode: %v, fromNode: %v, subject: %v, methodArgs: %v: max retries reached, check if node is up and running and if it got a subscriber started for the given REQ type", message.ToNode, message.FromNode, msg.Subject, message.MethodArgs)
|
|
|
|
// We do not want to send errorLogs for REQErrorLog type since
|
|
// it will just cause an endless loop.
|
|
if message.Method != REQErrorLog {
|
|
p.errorKernel.infoSend(p, message, er)
|
|
}
|
|
|
|
p.metrics.promNatsMessagesFailedACKsTotal.Inc()
|
|
return er
|
|
|
|
default:
|
|
// none of the above matched, so we've not reached max retries yet
|
|
er := fmt.Errorf("max retries for message not reached, retrying sending of message with ID %v", message.ID)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
|
|
p.metrics.promNatsMessagesMissedACKsTotal.Inc()
|
|
|
|
return ErrACKSubscribeRetry
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}()
|
|
|
|
if err == ErrACKSubscribeRetry {
|
|
continue
|
|
}
|
|
if err != nil {
|
|
// All error printing are handled within the function that returns
|
|
// the error, so we do nothing and return.
|
|
// No more trying to deliver the message
|
|
return
|
|
}
|
|
|
|
// Message were delivered successfully.
|
|
p.metrics.promNatsDeliveredTotal.Inc()
|
|
|
|
return
|
|
}
|
|
}
|
|
|
|
// messageSubscriberHandler will deserialize the message when a new message is
|
|
// received, check the MessageType field in the message to decide what
|
|
// kind of message it is and then it will check how to handle that message type,
|
|
// and then call the correct method handler for it.
|
|
//
|
|
// This handler function should be started in it's own go routine,so
|
|
// one individual handler is started per message received so we can keep
|
|
// the state of the message being processed, and then reply back to the
|
|
// correct sending process's reply, meaning so we ACK back to the correct
|
|
// publisher.
|
|
func (p process) messageSubscriberHandler(natsConn *nats.Conn, thisNode string, msg *nats.Msg, subject string) {
|
|
|
|
// Variable to hold a copy of the message data, so we don't mess with
|
|
// the original data since the original is a pointer value.
|
|
msgData := make([]byte, len(msg.Data))
|
|
copy(msgData, msg.Data)
|
|
|
|
// fmt.Printf(" * DEBUG: header value on subscriberHandler: %v\n", msg.Header)
|
|
|
|
// If debugging is enabled, print the source node name of the nats messages received.
|
|
if val, ok := msg.Header["fromNode"]; ok {
|
|
er := fmt.Errorf("info: nats message received from %v, with subject %v ", val, subject)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
}
|
|
|
|
// If compression is used, decompress it to get the gob data. If
|
|
// compression is not used it is the gob encoded data we already
|
|
// got in msgData so we do nothing with it.
|
|
if val, ok := msg.Header["cmp"]; ok {
|
|
switch val[0] {
|
|
case "z":
|
|
zr, err := zstd.NewReader(nil)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: zstd NewReader failed: %v", err)
|
|
p.errorKernel.errSend(p, Message{}, er)
|
|
return
|
|
}
|
|
msgData, err = zr.DecodeAll(msg.Data, nil)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: zstd decoding failed: %v", err)
|
|
p.errorKernel.errSend(p, Message{}, er)
|
|
zr.Close()
|
|
return
|
|
}
|
|
|
|
zr.Close()
|
|
|
|
case "g":
|
|
r := bytes.NewReader(msgData)
|
|
gr, err := gzip.NewReader(r)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: gzip NewReader failed: %v", err)
|
|
p.errorKernel.errSend(p, Message{}, er)
|
|
return
|
|
}
|
|
|
|
b, err := io.ReadAll(gr)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: gzip ReadAll failed: %v", err)
|
|
p.errorKernel.errSend(p, Message{}, er)
|
|
return
|
|
}
|
|
|
|
gr.Close()
|
|
|
|
msgData = b
|
|
}
|
|
}
|
|
|
|
message := Message{}
|
|
|
|
// Check if serialization is specified.
|
|
// Will default to gob serialization if nothing or non existing value is specified.
|
|
if val, ok := msg.Header["serial"]; ok {
|
|
// fmt.Printf(" * DEBUG: ok = %v, map = %v, len of val = %v\n", ok, msg.Header, len(val))
|
|
switch val[0] {
|
|
case "cbor":
|
|
err := cbor.Unmarshal(msgData, &message)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: cbor decoding failed, subject: %v, header: %v, error: %v", subject, msg.Header, err)
|
|
p.errorKernel.errSend(p, message, er)
|
|
return
|
|
}
|
|
default: // Deaults to gob if no match was found.
|
|
r := bytes.NewReader(msgData)
|
|
gobDec := gob.NewDecoder(r)
|
|
|
|
err := gobDec.Decode(&message)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: gob decoding failed, subject: %v, header: %v, error: %v", subject, msg.Header, err)
|
|
p.errorKernel.errSend(p, message, er)
|
|
return
|
|
}
|
|
}
|
|
|
|
} else {
|
|
// Default to gob if serialization flag was not specified.
|
|
r := bytes.NewReader(msgData)
|
|
gobDec := gob.NewDecoder(r)
|
|
|
|
err := gobDec.Decode(&message)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: gob decoding failed, subject: %v, header: %v, error: %v", subject, msg.Header, err)
|
|
p.errorKernel.errSend(p, message, er)
|
|
return
|
|
}
|
|
}
|
|
|
|
// Check if it is an ACK or NACK message, and do the appropriate action accordingly.
|
|
//
|
|
// With ACK messages Steward will keep the state of the message delivery, and try to
|
|
// resend the message if an ACK is not received within the timeout/retries specified
|
|
// in the message.
|
|
// When a process sends an ACK message, it will stop and wait for the nats-reply message
|
|
// for the time specified in the replyTimeout value. If no reply message is received
|
|
// within the given timeout the publishing process will try to resend the message for
|
|
// number of times specified in the retries field of the Steward message.
|
|
// When receiving a Steward-message with ACK enabled we send a message back the the
|
|
// node where the message originated using the msg.Reply subject field of the nats-message.
|
|
//
|
|
// With NACK messages we do not send a nats reply message, so the message will only be
|
|
// sent from the publisher once, and if it is not delivered it will not be retried.
|
|
switch {
|
|
|
|
// Check for ACK type Event.
|
|
case p.subject.Event == EventACK:
|
|
// When spawning sub processes we can directly assign handlers to the process upon
|
|
// creation. We here check if a handler is already assigned, and if it is nil, we
|
|
// lookup and find the correct handler to use if available.
|
|
if p.handler == nil {
|
|
// Look up the method handler for the specified method.
|
|
mh, ok := p.methodsAvailable.CheckIfExists(message.Method)
|
|
p.handler = mh.handler
|
|
if !ok {
|
|
er := fmt.Errorf("error: subscriberHandler: no such method type: %v", p.subject.Event)
|
|
p.errorKernel.errSend(p, message, er)
|
|
}
|
|
}
|
|
|
|
//var err error
|
|
|
|
_ = p.callHandler(message, thisNode)
|
|
|
|
// Send a confirmation message back to the publisher to ACK that the
|
|
// message was received by the subscriber. The reply should be sent
|
|
//no matter if the handler was executed successfully or not
|
|
natsConn.Publish(msg.Reply, []byte{})
|
|
|
|
case p.subject.Event == EventNACK:
|
|
// When spawning sub processes we can directly assign handlers to the process upon
|
|
// creation. We here check if a handler is already assigned, and if it is nil, we
|
|
// lookup and find the correct handler to use if available.
|
|
if p.handler == nil {
|
|
// Look up the method handler for the specified method.
|
|
mh, ok := p.methodsAvailable.CheckIfExists(message.Method)
|
|
p.handler = mh.handler
|
|
if !ok {
|
|
er := fmt.Errorf("error: subscriberHandler: no such method type: %v", p.subject.Event)
|
|
p.errorKernel.errSend(p, message, er)
|
|
}
|
|
}
|
|
|
|
// We do not send reply messages for EventNACL, so we can discard the output.
|
|
_ = p.callHandler(message, thisNode)
|
|
|
|
default:
|
|
er := fmt.Errorf("info: did not find that specific type of event: %#v", p.subject.Event)
|
|
p.errorKernel.infoSend(p, message, er)
|
|
|
|
}
|
|
}
|
|
|
|
// callHandler will call the handler for the Request type defined in the message.
|
|
// If checking signatures and/or acl's are enabled the signatures they will be
|
|
// verified, and if OK the handler is called.
|
|
func (p process) callHandler(message Message, thisNode string) []byte {
|
|
//out := []byte{}
|
|
|
|
// Call the handler if ACL/signature checking returns true.
|
|
// If the handler is to be called in a scheduled manner, we we take care of that too.
|
|
go func() {
|
|
switch p.verifySigOrAclFlag(message) {
|
|
|
|
case true:
|
|
|
|
executeHandler(p, message, thisNode)
|
|
|
|
case false:
|
|
// ACL/Signature checking failed.
|
|
er := fmt.Errorf("error: subscriberHandler: ACL were verified not-OK, doing nothing")
|
|
p.errorKernel.errSend(p, message, er)
|
|
log.Printf("%v\n", er)
|
|
}
|
|
}()
|
|
|
|
return []byte{}
|
|
}
|
|
|
|
// executeHandler will call the handler for the Request type defined in the message.
|
|
func executeHandler(p process, message Message, thisNode string) {
|
|
var err error
|
|
|
|
// Check if it is a message to run scheduled.
|
|
var interval int
|
|
var totalTime int
|
|
var runAsScheduled bool
|
|
switch {
|
|
case len(message.Schedule) < 2:
|
|
// Not at scheduled message,
|
|
case len(message.Schedule) == 2:
|
|
interval = message.Schedule[0]
|
|
totalTime = message.Schedule[1]
|
|
fallthrough
|
|
|
|
case interval > 0 && totalTime > 0:
|
|
runAsScheduled = true
|
|
}
|
|
|
|
// Either ACL were verified OK, or ACL/Signature check was not enabled, so we call the handler.
|
|
er := fmt.Errorf("info: subscriberHandler: Either ACL were verified OK, or ACL/Signature check was not enabled, so we call the handler: %v", true)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
|
|
switch {
|
|
case !runAsScheduled:
|
|
|
|
go func() {
|
|
_, err = p.handler(p, message, thisNode)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: subscriberHandler: handler method failed: %v", err)
|
|
p.errorKernel.errSend(p, message, er)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
}
|
|
}()
|
|
|
|
case runAsScheduled:
|
|
// Create two tickers to use for the scheduling.
|
|
intervalTicker := time.NewTicker(time.Second * time.Duration(interval))
|
|
totalTimeTicker := time.NewTicker(time.Second * time.Duration(totalTime))
|
|
|
|
// NB: Commented out this assignement of a specific message context
|
|
// to be used within handlers, since it will override the structure
|
|
// we have today. Keeping the code for a bit incase it makes sense
|
|
// to implement later.
|
|
//ctx, cancel := context.WithCancel(p.ctx)
|
|
//message.ctx = ctx
|
|
|
|
// Run the handler once, so we don't have to wait for the first ticker.
|
|
go func() {
|
|
_, err := p.handler(p, message, thisNode)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: subscriberHandler: handler method failed: %v", err)
|
|
p.errorKernel.errSend(p, message, er)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
}
|
|
}()
|
|
|
|
for {
|
|
select {
|
|
case <-p.ctx.Done():
|
|
er := fmt.Errorf("info: subscriberHandler: proc ctx done: toNode=%v, fromNode=%v, method=%v, methodArgs=%v", message.ToNode, message.FromNode, message.Method, message.MethodArgs)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
|
|
//cancel()
|
|
return
|
|
case <-totalTimeTicker.C:
|
|
// Total time reached. End the process.
|
|
//cancel()
|
|
er := fmt.Errorf("info: subscriberHandler: schedule totalTime done: toNode=%v, fromNode=%v, method=%v, methodArgs=%v", message.ToNode, message.FromNode, message.Method, message.MethodArgs)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
|
|
return
|
|
|
|
case <-intervalTicker.C:
|
|
go func() {
|
|
_, err := p.handler(p, message, thisNode)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: subscriberHandler: handler method failed: %v", err)
|
|
p.errorKernel.errSend(p, message, er)
|
|
p.errorKernel.logConsoleOnlyIfDebug(er, p.configuration)
|
|
}
|
|
}()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// verifySigOrAclFlag will do signature and/or acl checking based on which of
|
|
// those features are enabled, and then call the handler.
|
|
// The handler will also be called if neither signature or acl checking is enabled
|
|
// since it is up to the subscriber to decide if it want to use the auth features
|
|
// or not.
|
|
func (p process) verifySigOrAclFlag(message Message) bool {
|
|
doHandler := false
|
|
|
|
switch {
|
|
|
|
// If no checking enabled we should just allow the message.
|
|
case !p.nodeAuth.configuration.EnableSignatureCheck && !p.nodeAuth.configuration.EnableAclCheck:
|
|
//log.Printf(" * DEBUG: verify acl/sig: no acl or signature checking at all is enabled, ALLOW the message, method=%v\n", message.Method)
|
|
doHandler = true
|
|
|
|
// If only sig check enabled, and sig OK, we should allow the message.
|
|
case p.nodeAuth.configuration.EnableSignatureCheck && !p.nodeAuth.configuration.EnableAclCheck:
|
|
sigOK := p.nodeAuth.verifySignature(message)
|
|
|
|
log.Printf(" * DEBUG: verify acl/sig: Only signature checking enabled, ALLOW the message if sigOK, sigOK=%v, method %v\n", sigOK, message.Method)
|
|
|
|
if sigOK {
|
|
doHandler = true
|
|
}
|
|
|
|
// If both sig and acl check enabled, and sig and acl OK, we should allow the message.
|
|
case p.nodeAuth.configuration.EnableSignatureCheck && p.nodeAuth.configuration.EnableAclCheck:
|
|
sigOK := p.nodeAuth.verifySignature(message)
|
|
aclOK := p.nodeAuth.verifyAcl(message)
|
|
|
|
log.Printf(" * DEBUG: verify acl/sig:both signature and acl checking enabled, allow the message if sigOK and aclOK, or method is not REQCliCommand, sigOK=%v, aclOK=%v, method=%v\n", sigOK, aclOK, message.Method)
|
|
|
|
if sigOK && aclOK {
|
|
doHandler = true
|
|
}
|
|
|
|
// none of the verification options matched, we should keep the default value
|
|
// of doHandler=false, so the handler is not done.
|
|
default:
|
|
log.Printf(" * DEBUG: verify acl/sig: None of the verify flags matched, not doing handler for message, method=%v\n", message.Method)
|
|
}
|
|
|
|
return doHandler
|
|
}
|
|
|
|
// SubscribeMessage will register the Nats callback function for the specified
|
|
// nats subject. This allows us to receive Nats messages for a given subject
|
|
// on a node.
|
|
func (p process) subscribeMessages() *nats.Subscription {
|
|
subject := string(p.subject.name())
|
|
// natsSubscription, err := p.natsConn.Subscribe(subject, func(msg *nats.Msg) {
|
|
natsSubscription, err := p.natsConn.QueueSubscribe(subject, subject, func(msg *nats.Msg) {
|
|
//_, err := p.natsConn.Subscribe(subject, func(msg *nats.Msg) {
|
|
|
|
// Start up the subscriber handler.
|
|
go p.messageSubscriberHandler(p.natsConn, p.configuration.NodeName, msg, subject)
|
|
})
|
|
if err != nil {
|
|
log.Printf("error: Subscribe failed: %v\n", err)
|
|
return nil
|
|
}
|
|
|
|
return natsSubscription
|
|
}
|
|
|
|
// publishMessages will do the publishing of messages for one single
|
|
// process. The function should be run as a goroutine, and will run
|
|
// as long as the process it belongs to is running.
|
|
func (p process) publishMessages(natsConn *nats.Conn) {
|
|
var once sync.Once
|
|
|
|
var zEnc *zstd.Encoder
|
|
// Prepare a zstd encoder if enabled. By enabling it here before
|
|
// looping over the messages to send below, we can reuse the zstd
|
|
// encoder for all messages.
|
|
switch p.configuration.Compression {
|
|
case "z": // zstd
|
|
// enc, err := zstd.NewWriter(nil, zstd.WithEncoderLevel(zstd.SpeedBestCompression))
|
|
enc, err := zstd.NewWriter(nil, zstd.WithEncoderConcurrency(1))
|
|
if err != nil {
|
|
log.Printf("error: zstd new encoder failed: %v\n", err)
|
|
os.Exit(1)
|
|
}
|
|
zEnc = enc
|
|
defer zEnc.Close()
|
|
|
|
}
|
|
|
|
// Loop and handle 1 message at a time. If some part of the code
|
|
// fails in the loop we should throw an error and use `continue`
|
|
// to jump back here to the beginning of the loop and continue
|
|
// with the next message.
|
|
|
|
// Adding a timer that will be used for when to remove the sub process
|
|
// publisher. The timer is reset each time a message is published with
|
|
// the process, so the sub process publisher will not be removed until
|
|
// it have not received any messages for the given amount of time.
|
|
ticker := time.NewTicker(time.Second * time.Duration(p.configuration.KeepPublishersAliveFor))
|
|
|
|
for {
|
|
|
|
// Wait and read the next message on the message channel, or
|
|
// exit this function if Cancel are received via ctx.
|
|
select {
|
|
case <-ticker.C:
|
|
// We only want to remove subprocesses
|
|
if p.isSubProcess {
|
|
p.ctxCancel()
|
|
|
|
p.processes.active.mu.Lock()
|
|
delete(p.processes.active.procNames, p.processName)
|
|
p.processes.active.mu.Unlock()
|
|
}
|
|
|
|
case m := <-p.subject.messageCh:
|
|
ticker.Reset(time.Second * time.Duration(p.configuration.KeepPublishersAliveFor))
|
|
// Sign the methodArgs, and add the signature to the message.
|
|
m.ArgSignature = p.addMethodArgSignature(m)
|
|
// fmt.Printf(" * DEBUG: add signature, fromNode: %v, method: %v, len of signature: %v\n", m.FromNode, m.Method, len(m.ArgSignature))
|
|
|
|
go p.publishAMessage(m, zEnc, once, natsConn)
|
|
case <-p.ctx.Done():
|
|
er := fmt.Errorf("info: canceling publisher: %v", p.processName)
|
|
//sendErrorLogMessage(p.toRingbufferCh, Node(p.node), er)
|
|
log.Printf("%v\n", er)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (p process) addMethodArgSignature(m Message) []byte {
|
|
argsString := argsToString(m.MethodArgs)
|
|
sign := ed25519.Sign(p.nodeAuth.SignPrivateKey, []byte(argsString))
|
|
|
|
return sign
|
|
}
|
|
|
|
func (p process) publishAMessage(m Message, zEnc *zstd.Encoder, once sync.Once, natsConn *nats.Conn) {
|
|
// Create the initial header, and set values below depending on the
|
|
// various configuration options chosen.
|
|
natsMsgHeader := make(nats.Header)
|
|
natsMsgHeader["fromNode"] = []string{string(p.node)}
|
|
|
|
// The serialized value of the nats message payload
|
|
var natsMsgPayloadSerialized []byte
|
|
|
|
// encode the message structure into gob binary format before putting
|
|
// it into a nats message.
|
|
// Prepare a gob encoder with a buffer before we start the loop
|
|
switch p.configuration.Serialization {
|
|
case "cbor":
|
|
b, err := cbor.Marshal(m)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: messageDeliverNats: cbor encode message failed: %v", err)
|
|
p.errorKernel.errSend(p, m, er)
|
|
return
|
|
}
|
|
|
|
natsMsgPayloadSerialized = b
|
|
natsMsgHeader["serial"] = []string{p.configuration.Serialization}
|
|
|
|
default:
|
|
var bufGob bytes.Buffer
|
|
gobEnc := gob.NewEncoder(&bufGob)
|
|
err := gobEnc.Encode(m)
|
|
if err != nil {
|
|
er := fmt.Errorf("error: messageDeliverNats: gob encode message failed: %v", err)
|
|
p.errorKernel.errSend(p, m, er)
|
|
return
|
|
}
|
|
|
|
natsMsgPayloadSerialized = bufGob.Bytes()
|
|
natsMsgHeader["serial"] = []string{"gob"}
|
|
}
|
|
|
|
// Get the process name so we can look up the process in the
|
|
// processes map, and increment the message counter.
|
|
pn := processNameGet(p.subject.name(), processKindPublisher)
|
|
m.ID = p.messageID
|
|
|
|
// The compressed value of the nats message payload. The content
|
|
// can either be compressed or in it's original form depening on
|
|
// the outcome of the switch below, and if compression were chosen
|
|
// or not.
|
|
var natsMsgPayloadCompressed []byte
|
|
|
|
// Compress the data payload if selected with configuration flag.
|
|
// The compression chosen is later set in the nats msg header when
|
|
// calling p.messageDeliverNats below.
|
|
switch p.configuration.Compression {
|
|
case "z": // zstd
|
|
natsMsgPayloadCompressed = zEnc.EncodeAll(natsMsgPayloadSerialized, nil)
|
|
natsMsgHeader["cmp"] = []string{p.configuration.Compression}
|
|
|
|
// p.zEncMutex.Lock()
|
|
// zEnc.Reset(nil)
|
|
// p.zEncMutex.Unlock()
|
|
|
|
case "g": // gzip
|
|
var buf bytes.Buffer
|
|
func() {
|
|
gzipW := gzip.NewWriter(&buf)
|
|
defer gzipW.Close()
|
|
defer gzipW.Flush()
|
|
_, err := gzipW.Write(natsMsgPayloadSerialized)
|
|
if err != nil {
|
|
log.Printf("error: failed to write gzip: %v\n", err)
|
|
return
|
|
}
|
|
|
|
}()
|
|
|
|
natsMsgPayloadCompressed = buf.Bytes()
|
|
natsMsgHeader["cmp"] = []string{p.configuration.Compression}
|
|
|
|
case "": // no compression
|
|
natsMsgPayloadCompressed = natsMsgPayloadSerialized
|
|
natsMsgHeader["cmp"] = []string{"none"}
|
|
|
|
default: // no compression
|
|
// Allways log the error to console.
|
|
er := fmt.Errorf("error: publishing: compression type not defined, setting default to no compression")
|
|
log.Printf("%v\n", er)
|
|
|
|
// We only wan't to send the error message to errorCentral once.
|
|
once.Do(func() {
|
|
p.errorKernel.errSend(p, m, er)
|
|
})
|
|
|
|
// No compression, so we just assign the value of the serialized
|
|
// data directly to the variable used with messageDeliverNats.
|
|
natsMsgPayloadCompressed = natsMsgPayloadSerialized
|
|
natsMsgHeader["cmp"] = []string{"none"}
|
|
}
|
|
|
|
// Create the Nats message with headers and payload, and do the
|
|
// sending of the message.
|
|
p.messageDeliverNats(natsMsgPayloadCompressed, natsMsgHeader, natsConn, m)
|
|
|
|
select {
|
|
case m.done <- struct{}{}:
|
|
// Signaling back to the ringbuffer that we are done with the
|
|
// current message, and it can remove it from the ringbuffer.
|
|
case <-p.ctx.Done():
|
|
return
|
|
}
|
|
|
|
// Increment the counter for the next message to be sent.
|
|
p.messageID++
|
|
|
|
{
|
|
p.processes.active.mu.Lock()
|
|
p.processes.active.procNames[pn] = p
|
|
p.processes.active.mu.Unlock()
|
|
}
|
|
|
|
// // Handle the error.
|
|
// //
|
|
// // NOTE: None of the processes above generate an error, so the the
|
|
// // if clause will never be triggered. But keeping it here as an example
|
|
// // for now for how to handle errors.
|
|
// if err != nil {
|
|
// // Create an error type which also creates a channel which the
|
|
// // errorKernel will send back the action about what to do.
|
|
// ep := errorEvent{
|
|
// //errorType: logOnly,
|
|
// process: p,
|
|
// message: m,
|
|
// errorActionCh: make(chan errorAction),
|
|
// }
|
|
// p.errorCh <- ep
|
|
//
|
|
// // Wait for the response action back from the error kernel, and
|
|
// // decide what to do. Should we continue, quit, or .... ?
|
|
// switch <-ep.errorActionCh {
|
|
// case errActionContinue:
|
|
// // Just log and continue
|
|
// log.Printf("The errAction was continue...so we're continuing\n")
|
|
// case errActionKill:
|
|
// log.Printf("The errAction was kill...so we're killing\n")
|
|
// // ....
|
|
// default:
|
|
// log.Printf("Info: publishMessages: The errAction was not defined, so we're doing nothing\n")
|
|
// }
|
|
// }
|
|
}
|