// Notes: package steward import ( "bytes" "encoding/gob" "fmt" "log" "sync" "time" "github.com/nats-io/nats.go" ) var mu sync.Mutex type messageType int // TODO: Figure it makes sense to have these types at all. // It might make more sense to implement these as two // individual subjects. const ( // shellCommand, command that will just wait for an // ack, and nothing of the output of the command are // delivered back in the reply ack message. // The message should contain the unique ID of the // command. commandReturnOutput messageType = iota // shellCommand, wait for and return the output // of the command in the ACK message. This means // that the command should be executed immediately // and that we should get the confirmation that it // was successful or not. eventReturnAck messageType = iota // eventCommand, just wait for the ACK that the // message is received. What action happens on the // receiving side is up to the received to decide. ) type Message struct { // The Unique ID of the message ID int // The actual data in the message // TODO: Change this to a slice instead...or maybe use an // interface type here to handle several data types ? Data []string // The type of the message being sent MessageType messageType } // server is the structure that will hold the state about spawned // processes on a local instance. type server struct { natsConn *nats.Conn // TODO: sessions should probably hold a slice/map of processes ? processes map[node]process // The last processID created lastProcessID int nodeName string } // newServer will prepare and return a server type func NewServer(brokerAddress string, nodeName string) (*server, error) { conn, err := nats.Connect(brokerAddress, nil) if err != nil { log.Printf("error: nats.Connect failed: %v\n", err) } s := &server{ nodeName: nodeName, natsConn: conn, processes: make(map[node]process), } go func() { for { for k := range s.processes { select { case e := <-s.processes[k].errorCh: fmt.Printf("*** %v\n", e) default: time.Sleep(time.Millisecond * 100) } } } }() return s, nil } func (s *server) RunPublisher() { proc := s.prepareNewProcess("btship1") // fmt.Printf("*** %#v\n", proc) go s.spawnProcess(proc) proc = s.prepareNewProcess("btship2") // fmt.Printf("*** %#v\n", proc) go s.spawnProcess(proc) select {} } type node string // process are represent the communication to one individual host type process struct { messageID int subject string // Put a node here to be able know the node a process is at. // NB: Might not be needed later on. node node // The processID for the current process processID int // errorCh is used to report errors from a process // NB: Implementing this as an int to report for testing errorCh chan string } // prepareNewProcess will set the the provided values and the default // values for a process. func (s *server) prepareNewProcess(nodeName string) process { // create the initial configuration for a sessions communicating with 1 host. s.lastProcessID++ proc := process{ messageID: 0, node: node(nodeName), processID: s.lastProcessID, errorCh: make(chan string), } return proc } // spawnProcess will spawn a new process. It will give the process // the next available ID, and also add the process to the processes // map. func (s *server) spawnProcess(proc process) { mu.Lock() s.processes[proc.node] = proc mu.Unlock() // Loop creating one new message every second to simulate getting new // messages to deliver. for { m := getMessageToDeliver() m.ID = s.processes[proc.node].messageID messageDeliver(proc, m, s.natsConn) // Increment the counter for the next message to be sent. proc.messageID++ s.processes[proc.node] = proc time.Sleep(time.Second * 1) // simulate that we get an error, and that we can send that // out of the process and receive it in another thread. s.processes[proc.node].errorCh <- "received an error from process: " + fmt.Sprintf("%v\n", proc.processID) //fmt.Printf("%#v\n", s.processes[proc.node]) } } // get MessageToDeliver will pick up the next message to be created. // TODO: read this from local file or rest or....? func getMessageToDeliver() Message { return Message{ Data: []string{"uname", "-a"}, MessageType: eventReturnAck, } } func messageDeliver(proc process, message Message, natsConn *nats.Conn) { for { dataPayload, err := gobEncodePayload(message) if err != nil { log.Printf("error: createDataPayload: %v\n", err) } msg := &nats.Msg{ Subject: fmt.Sprintf("%s.%s.%s", proc.node, "command", "shellcommand"), // Structure of the reply message are: // reply... Reply: "reply." + string(proc.node) + "command.shellcommand", Data: dataPayload, } // The SubscribeSync used in the subscriber, will get messages that // are sent after it started subscribing, so we start a publisher // that sends out a message every second. // // Create a subscriber for the reply message. subReply, err := natsConn.SubscribeSync(msg.Reply) if err != nil { log.Printf("error: nc.SubscribeSync failed: %v\n", err) continue } // Publish message err = natsConn.PublishMsg(msg) if err != nil { log.Printf("error: publish failed: %v\n", err) continue } // Wait up until 10 seconds for a reply, // continue and resend if to reply received. msgReply, err := subReply.NextMsg(time.Second * 10) if err != nil { log.Printf("error: subRepl.NextMsg failed for node=%v pid=%v: %v\n", proc.node, proc.processID, err) // did not receive a reply, continuing from top again continue } fmt.Printf("publisher: received: %s\n", msgReply.Data) return } } // gobEncodePayload will encode the message structure along with its // valued in gob binary format. // TODO: Check if it adds value to compress with gzip. func gobEncodePayload(m Message) ([]byte, error) { var buf bytes.Buffer gobEnc := gob.NewEncoder(&buf) err := gobEnc.Encode(m) if err != nil { return nil, fmt.Errorf("error: gob.Enode failed: %v", err) } return buf.Bytes(), nil }