
Ctrl
ctrl is a Command & Control (C2) backend system for Servers, IOT and Edge platforms. Simply put,
control anything that runs an operating system.

Example use cases:

Send shell commands or scripts to one or many end nodes that will instruct to change config,
restart services and control those systems.
Gather data from both secure and not secure devices and systems, and transfer them encrypted
in a secure way over the internet to your central system for handling those data.
Collect metrics or monitor end nodes, then send and store the result to some ctrl instance, or
pass those data's on to another ctrl instance for further handling of metrics or monitoring data.
Distribute certificates.
Run as a sidecar in Kubernetes for direct access to the pod.

As long as you can do something as an operator in a shell on a system you can do the same with ctrl
in a secure and encrypted way to one or all end nodes (servers) in one go with one single
message/command.

Features
Run bash commands or complete scripts of your prefered scripting language (bash, python,
powershell and so on).
Read and write to files.
Copy files.
ACL's to restric who can do what.

Example

An example of a request message to copy into ctrl's readfolder.

Quick start
Start up a local nats message broker

docker run -p 4444:4444 nats -p 4444

Create a ctrl docker image.

git clone git@github.com:postmannen/ctrl.git
cd ctrl
docker build -t ctrl:test1 .
mkdir -p testrun/readfolder
cd testrun

create a .env file

cat << EOF > .env
NODE_NAME="node1"
BROKER_ADDRESS="127.0.0,1:4444"
ENABLE_DEBUG=1
START_PUB_REQ_HELLO=60
IS_CENTRAL_ERROR_LOGGER=0
EOF

Start the ctrl container.

docker run --env-file=".env" --rm -ti -v $(PWD)/readfolder:/app/readfolder ctrl:test1

Send a message.

cat << EOF > msg.yaml

- toNodes:
 - node1
 method: REQCliCommand
 methodArgs:
 - "bash"
 - "-c"
 - |
 echo "some config line" > /etc/my-service-config.1
 echo "some config line" > /etc/my-service-config.2
 echo "some config line" > /etc/my-service-config.3
 systemctl restart my-service

 replyMethod: REQNone
 ACKTimeout: 0
EOF

cp msg.yaml readfolder

Input methods
New Request Messages in Json/Yaml format can be injected by the user to ctrl in the following ways:

Unix Socket. Use for example netcat or another tool to deliver new messages to a socket like
 nc -U tmp/ctrl.sock < msg.yaml .
Read Folder. Write/Copy messages to be delivered to the readfolder of ctrl.
TCP Listener, Use for example netcat or another tool to deliver new messages a TCP Listener
like nc localhost:8888 < msg.yaml .

Error messages from nodes
Error messages will be sent back to the central error handler and the originating node upon
failure.

The error logs can be read on the central server in the directory <ctrl-home>/data/errorLog , and in
the log of the instance the source node. You can also create a message to read the errorlog if you
don't have direct access to the central server.

Flags and configuration file
ctrl supports both the use of flags with env variables. An .env file can also be used.

Schema for the messages to send into ctrl via the API's

Name value description

toNode string
A single node to send a message
to

toNodes string array
A comma separated list of nodes
to send a message to

method string The request method to use

methodArgs string array
The arguments to use for the
method

replyMethod string
The method to use for the reply
message

replyMethodArgs string array
The arguments to use for the reply
method

ACKTimeout int

The time to wait for a received
acknowledge (ACK). 0 for no
acknowledge

retries int
The number of times to retry if no
ACK was received

replyACKTimeout int
The timeout to wait for an ACK
message before we retry

replyRetries int

The number of times to retry if no
ACK was received for repply
messages

methodTimeout int

The timeout in seconds for how
long we wait for a method to
complete

Name value description

replyMethodTimeout int

The timeout in seconds for how
long we wait for a method to
complete for repply messages

directory string
The directory for where to store the
data of the repply message

fileName string
The name of the file for where we
store the data of the reply message

schedule
[int type value for interval in
seconds, int type value for total
run time in seconds]

Schedule a message to re run at
interval

Request Methods

Method name Description

REQOpProcessList Get a list of the running processes

REQOpProcessStart Start up a process

REQOpProcessStop Stop a process

REQCliCommand
Will run the command given, and return the stdout output of the
command when the command is done

REQCliCommandCont
Will run the command given, and return the stdout output of the
command continously while the command runs

REQTailFile
Tail log files on some node, and get the result for each new line read
sent back in a reply message

REQHttpGet Scrape web url, and get the html sent back in a reply message

REQHello Send Hello messages

REQCopySrc Copy a file from one node to another node

REQErrorLog Method for receiving error logs for Central error logger

REQNone Don't send a reply message

Method name Description

REQToConsole Print to stdout or stderr

REQToFileAppend Append to file, can also write to unix sockets

REQToFile Write to file, can also write to unix sockets

History
ctrl is the continuation of the code I earlier wrote for RaaLabs called Steward. The original repo was
public with a MIT license, but in October 2023 the original repo was made private, and are no longer
avaialable to the public. The goal of this repo is to provide an actively maintained, reliable and stable
version. This is also a playground for myself to test out ideas an features for such a service as
described earlier.

This started out as an idea I had for how to control infrastructure. This is the continuation of the same
idea, and a project I'm working on free of charge in my own spare time, so please be gentle 😃

NB: Filing of issues and bug fixes are highly appreciated. Feature requests will genereally not be
followed up simply because I don't have the time to review it at this time :

Steward was written with an MIT License. With the new fork the service was renamed to ctrl and the
license were changed to AGPL V3.0. More information in the LICENSE-CHANGE.md and LICENSE
files.

Disclaimer
All code in this repository are to be concidered not-production-ready, and the use is at your own
responsibility and risk. The code are the attempt to concretize the idea of a purely async
management system where the controlling unit is decoupled from the receiving unit, and that that we
know the state of all the receiving units at all times.

Also read the license file for further details.

Expect the main branch to have breaking changes. If stability is needed, use the released packages,
and read the release notes where changes will be explained.

file:///Users/bt/ctrl/LICENSE-CHANGE.md
file:///Users/bt/ctrl/LICENSE

