// Notes: package steward import ( "context" "fmt" "log" "net" "os" "os/signal" "path/filepath" "strings" "sync" "time" "github.com/nats-io/nats.go" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promauto" ) type processName string // Will return a process name made up of subjectName+processKind func processNameGet(sn subjectName, pk processKind) processName { pn := fmt.Sprintf("%s_%s", sn, pk) return processName(pn) } // processes holds all the information about running processes type processes struct { // The active spawned processes active map[processName]map[int]process // mutex to lock the map mu sync.RWMutex // The last processID created lastProcessID int // promTotalProcesses prometheus.Gauge // promProcessesVec *prometheus.GaugeVec } // newProcesses will prepare and return a *processes func newProcesses(promRegistry *prometheus.Registry) *processes { p := processes{ active: make(map[processName]map[int]process), } p.promTotalProcesses = promauto.NewGauge(prometheus.GaugeOpts{ Name: "total_running_processes", Help: "The current number of total running processes", }) p.promProcessesVec = promauto.NewGaugeVec(prometheus.GaugeOpts{ Name: "running_process", Help: "Name of the running process", }, []string{"processName"}, ) return &p } // server is the structure that will hold the state about spawned // processes on a local instance. type server struct { // The main background context ctx context.Context // The CancelFunc for the main context ctxCancelFunc context.CancelFunc // Configuration options used for running the server configuration *Configuration // The nats connection to the broker natsConn *nats.Conn // net listener for communicating via the steward socket StewardSockListener net.Listener // net listener for the communication with Stew StewSockListener net.Listener // processes holds all the information about running processes processes *processes // The name of the node nodeName string // Mutex for locking when writing to the process map toRingbufferCh chan []subjectAndMessage // errorKernel is doing all the error handling like what to do if // an error occurs. errorKernel *errorKernel // metric exporter metrics *metrics } // newServer will prepare and return a server type func NewServer(c *Configuration) (*server, error) { ctx, cancel := context.WithCancel(context.Background()) var opt nats.Option if c.RootCAPath != "" { opt = nats.RootCAs(c.RootCAPath) } if c.NkeySeedFile != "" { var err error // fh, err := os.Open(c.NkeySeedFile) // if err != nil { // return nil, fmt.Errorf("error: failed to open nkey seed file: %v\n", err) // } // b, err := io.ReadAll(fh) // if err != nil { // return nil, fmt.Errorf("error: failed to read nkey seed file: %v\n", err) // } opt, err = nats.NkeyOptionFromSeed(c.NkeySeedFile) if err != nil { cancel() return nil, fmt.Errorf("error: failed to read nkey seed file: %v", err) } } // Connect to the nats server, and retry until succesful. var conn *nats.Conn const connRetryWait = 5 for { var err error // Setting MaxReconnects to -1 which equals unlimited. conn, err = nats.Connect(c.BrokerAddress, opt, nats.MaxReconnects(-1)) // Nats use string types for errors, so we need to check the content of the error. // If no servers where available, we loop and retry until succesful. if err != nil { if strings.Contains(err.Error(), "no servers available") { log.Printf("error: could not connect, waiting 5 seconds, and retrying: %v\n", err) time.Sleep(time.Duration(time.Second * connRetryWait)) continue } er := fmt.Errorf("error: nats.Connect failed: %v", err) cancel() return nil, er } break } // Prepare the connection to the Steward socket file // Check if socket folder exists, if not create it if _, err := os.Stat(c.SocketFolder); os.IsNotExist(err) { err := os.MkdirAll(c.SocketFolder, 0700) if err != nil { cancel() return nil, fmt.Errorf("error: failed to create socket folder directory %v: %v", c.SocketFolder, err) } } socketFilepath := filepath.Join(c.SocketFolder, "steward.sock") if _, err := os.Stat(socketFilepath); !os.IsNotExist(err) { err = os.Remove(socketFilepath) if err != nil { er := fmt.Errorf("error: could not delete sock file: %v", err) cancel() return nil, er } } nl, err := net.Listen("unix", socketFilepath) if err != nil { er := fmt.Errorf("error: failed to open socket: %v", err) cancel() return nil, er } // --- // Prepare the connection to the Stew socket file // Check if socket folder exists, if not create it if _, err := os.Stat(c.SocketFolder); os.IsNotExist(err) { err := os.MkdirAll(c.SocketFolder, 0700) if err != nil { cancel() return nil, fmt.Errorf("error: failed to create socket folder directory %v: %v", c.SocketFolder, err) } } stewSocketFilepath := filepath.Join(c.SocketFolder, "stew.sock") if _, err := os.Stat(stewSocketFilepath); !os.IsNotExist(err) { err = os.Remove(stewSocketFilepath) if err != nil { er := fmt.Errorf("error: could not delete stew.sock file: %v", err) cancel() return nil, er } } stewNL, err := net.Listen("unix", stewSocketFilepath) if err != nil { er := fmt.Errorf("error: failed to open stew socket: %v", err) cancel() return nil, er } // --- metrics := newMetrics(c.PromHostAndPort) s := &server{ ctx: ctx, ctxCancelFunc: cancel, configuration: c, nodeName: c.NodeName, natsConn: conn, StewardSockListener: nl, StewSockListener: stewNL, processes: newProcesses(metrics.promRegistry), toRingbufferCh: make(chan []subjectAndMessage), metrics: metrics, } // Create the default data folder for where subscribers should // write it's data, check if data folder exist, and create it if needed. if _, err := os.Stat(c.SubscribersDataFolder); os.IsNotExist(err) { if c.SubscribersDataFolder == "" { return nil, fmt.Errorf("error: subscribersDataFolder value is empty, you need to provide the config or the flag value at startup %v: %v", c.SubscribersDataFolder, err) } err := os.Mkdir(c.SubscribersDataFolder, 0700) if err != nil { return nil, fmt.Errorf("error: failed to create data folder directory %v: %v", c.SubscribersDataFolder, err) } log.Printf("info: Creating subscribers data folder at %v\n", c.SubscribersDataFolder) } return s, nil } // Start will spawn up all the predefined subscriber processes. // Spawning of publisher processes is done on the fly by checking // if there is publisher process for a given message subject, and // not exist it will spawn one. func (s *server) Start() { // Start the error kernel that will do all the error handling // not done within a process. s.errorKernel = newErrorKernel() s.errorKernel.startErrorKernel(s.toRingbufferCh) // Start collecting the metrics go s.startMetrics() // Start the checking the input socket for new messages from operator. go s.readSocket(s.toRingbufferCh) // Delete the socket file when the program exits. defer func() { socketFilepath := filepath.Join(s.configuration.SocketFolder, "steward.sock") if _, err := os.Stat(socketFilepath); !os.IsNotExist(err) { err = os.Remove(socketFilepath) if err != nil { er := fmt.Errorf("error: could not delete sock file: %v", err) log.Printf("%v\n", er) } } }() // Start up the predefined subscribers. Since all the logic to handle // processes are tied to the process struct, we need to create an // initial process to start the rest. sub := newSubject(REQInitial, s.nodeName) p := newProcess(s.ctx, s.natsConn, s.processes, s.toRingbufferCh, s.configuration, sub, s.errorKernel.errorCh, "", []Node{}, nil) p.ProcessesStart(s.ctx) time.Sleep(time.Second * 1) s.processes.printProcessesMap() // Start the processing of new messages from an input channel. s.routeMessagesToProcess("./incomingBuffer.db", s.toRingbufferCh) // Set up channel on which to send signal notifications. // We must use a buffered channel or risk missing the signal // if we're not ready to receive when the signal is sent. sigCh := make(chan os.Signal, 1) signal.Notify(sigCh, os.Interrupt) //Block until we receive a signal sig := <-sigCh fmt.Printf("Got exit signal, terminating all processes, %v\n", sig) s.ctxCancelFunc() } func (p *processes) printProcessesMap() { fmt.Println("--------------------------------------------------------------------------------------------") log.Printf("*** Output of processes map :\n") p.mu.Lock() for _, vSub := range p.active { for _, vID := range vSub { log.Printf("* proc - : %v, id: %v, name: %v, allowed from: %v\n", vID.processKind, vID.processID, vID.subject.name(), vID.allowedReceivers) } } p.mu.Unlock() p.promTotalProcesses.Set(float64(len(p.active))) fmt.Println("--------------------------------------------------------------------------------------------") } // sendErrorMessage will put the error message directly on the channel that is // read by the nats publishing functions. func sendErrorLogMessage(newMessagesCh chan<- []subjectAndMessage, FromNode Node, theError error) { // NB: Adding log statement here for more visuality during development. log.Printf("%v\n", theError) sam := createErrorMsgContent(FromNode, theError) newMessagesCh <- []subjectAndMessage{sam} } // createErrorMsgContent will prepare a subject and message with the content // of the error func createErrorMsgContent(FromNode Node, theError error) subjectAndMessage { // Add time stamp er := fmt.Sprintf("%v, %v\n", time.Now().UTC(), theError.Error()) sam := subjectAndMessage{ Subject: newSubject(REQErrorLog, "errorCentral"), Message: Message{ Directory: "errorLog", ToNode: "errorCentral", FromNode: FromNode, FileExtension: ".log", Data: []string{er}, Method: REQErrorLog, }, } return sam } // routeMessagesToProcess takes a database name and an input channel as // it's input arguments. // The database will be used as the persistent store for the work queue // which is implemented as a ring buffer. // The input channel are where we read new messages to publish. // Incomming messages will be routed to the correct subject process, where // the handling of each nats subject is handled within it's own separate // worker process. // It will also handle the process of spawning more worker processes // for publisher subjects if it does not exist. func (s *server) routeMessagesToProcess(dbFileName string, newSAM chan []subjectAndMessage) { // Prepare and start a new ring buffer const bufferSize int = 1000 rb := newringBuffer(*s.configuration, bufferSize, dbFileName, Node(s.nodeName), s.toRingbufferCh) inCh := make(chan subjectAndMessage) ringBufferOutCh := make(chan samDBValue) // start the ringbuffer. rb.start(inCh, ringBufferOutCh, s.configuration.DefaultMessageTimeout, s.configuration.DefaultMessageRetries) // Start reading new fresh messages received on the incomming message // pipe/file requested, and fill them into the buffer. go func() { for samSlice := range newSAM { for _, sam := range samSlice { inCh <- sam } } close(inCh) }() // Process the messages that are in the ring buffer. Check and // send if there are a specific subject for it, and if no subject // exist throw an error. var coe CommandOrEvent coeAvailable := coe.GetCommandOrEventAvailable() var method Method methodsAvailable := method.GetMethodsAvailable() go func() { for samTmp := range ringBufferOutCh { sam := samTmp.Data // Check if the format of the message is correct. if _, ok := methodsAvailable.CheckIfExists(sam.Message.Method); !ok { er := fmt.Errorf("error: routeMessagesToProcess: the method do not exist, message dropped: %v", sam.Message.Method) sendErrorLogMessage(s.toRingbufferCh, Node(s.nodeName), er) continue } if !coeAvailable.CheckIfExists(sam.Subject.CommandOrEvent, sam.Subject) { er := fmt.Errorf("error: routeMessagesToProcess: the command or event do not exist, message dropped: %v", sam.Message.Method) sendErrorLogMessage(s.toRingbufferCh, Node(s.nodeName), er) continue } redo: // Adding a label here so we are able to redo the sending // of the last message if a process with specified subject // is not present. The process will then be created, and // the code will loop back to the redo: label. m := sam.Message subjName := sam.Subject.name() // DEBUG: fmt.Printf("** handleNewOperatorMessages: message: %v, ** subject: %#v\n", m, sam.Subject) pn := processNameGet(subjName, processKindPublisher) // Check if there is a map of type map[int]process registered // for the processName, and if it exists then return it. s.processes.mu.Lock() existingProcIDMap, ok := s.processes.active[pn] s.processes.mu.Unlock() // If found a map above, range it, and are there already a process // for that subject, put the message on that processes incomming // message channel. if ok { s.processes.mu.Lock() for _, existingProc := range existingProcIDMap { log.Printf("info: processNewMessages: found the specific subject: %v\n", subjName) existingProc.subject.messageCh <- m } s.processes.mu.Unlock() // If no process to handle the specific subject exist, // the we create and spawn one. } else { // If a publisher process do not exist for the given subject, create it, and // by using the goto at the end redo the process for this specific message. log.Printf("info: processNewMessages: did not find that specific subject, starting new process for subject: %v\n", subjName) sub := newSubject(sam.Subject.Method, sam.Subject.ToNode) proc := newProcess(s.ctx, s.natsConn, s.processes, s.toRingbufferCh, s.configuration, sub, s.errorKernel.errorCh, processKindPublisher, nil, nil) // fmt.Printf("*** %#v\n", proc) proc.spawnWorker(s.processes, s.natsConn) // Now when the process is spawned we jump back to the redo: label, // and send the message to that new process. goto redo } } }() }