// Notes: package steward import ( "bytes" "encoding/gob" "fmt" "log" "sync" "time" "github.com/nats-io/nats.go" ) // MessageKind describes on the message level if this is // an event or command kind of message in the Subject name. // This field is mainly used to be able to spawn up different // worker processes based on the Subject name so we can have // one process for handling event kind, and another for // handling command kind of messages. type MessageKind string // TODO: Figure it makes sense to have these types at all. // It might make more sense to implement these as two // individual subjects. const ( // shellCommand, command that will just wait for an // ack, and nothing of the output of the command are // delivered back in the reply ack message. // The message should contain the unique ID of the // command. Command MessageKind = "command" // shellCommand, wait for and return the output // of the command in the ACK message. This means // that the command should be executed immediately // and that we should get the confirmation that it // was successful or not. Event MessageKind = "event" // eventCommand, just wait for the ACK that the // message is received. What action happens on the // receiving side is up to the received to decide. ) type Message struct { // The Unique ID of the message ID int `json:"id" yaml:"id"` // The actual data in the message // TODO: Change this to a slice instead...or maybe use an // interface type here to handle several data types ? Data []string `json:"data" yaml:"data"` // The type of the message being sent MessageType MessageKind `json:"messageType" yaml:"messageType"` } // server is the structure that will hold the state about spawned // processes on a local instance. type server struct { natsConn *nats.Conn // TODO: sessions should probably hold a slice/map of processes ? processes map[subjectName]process // The last processID created lastProcessID int // The name of the node nodeName string mu sync.Mutex // The channel where we receive new messages from the outside to // insert into the system for being processed newMessagesCh chan []jsonFromFile // errorCh is used to report errors from a process // NB: Implementing this as an int to report for testing errorCh chan errProcess // errorKernel errorKernel *errorKernel } // newServer will prepare and return a server type func NewServer(brokerAddress string, nodeName string) (*server, error) { conn, err := nats.Connect(brokerAddress, nil) if err != nil { log.Printf("error: nats.Connect failed: %v\n", err) } s := &server{ nodeName: nodeName, natsConn: conn, processes: make(map[subjectName]process), newMessagesCh: make(chan []jsonFromFile), errorCh: make(chan errProcess, 2), } // Start the error kernel that will do all the error handling // not done within a process. s.errorKernel = newErrorKernel() s.errorKernel.startErrorKernel(s.errorCh) return s, nil } func (s *server) PublisherStart() { // Start the checking the input file for new messages from operator. go getMessagesFromFile("./", "inmsg.txt", s.newMessagesCh) // Prepare and start a single process { sub := newSubject("ship1", "command", "shellcommand") proc := s.processPrepareNew(sub, s.errorCh) // fmt.Printf("*** %#v\n", proc) go s.processSpawnWorker(proc) } // Prepare and start a single process { sub := newSubject("ship2", "command", "shellcommand") proc := s.processPrepareNew(sub, s.errorCh) // fmt.Printf("*** %#v\n", proc) go s.processSpawnWorker(proc) } s.handleNewOperatorMessages() select {} } // handleNewOperatorMessages will handle all the new operator messages // given to the system, and route them to the correct subject queue. func (s *server) handleNewOperatorMessages() { // Process the messages that have been received on the incomming // message pipe. Check and send if there are a specific subject // for it, and no subject exist throw an error. // // TODO: Later on the only thing that should be checked here is // that there is a node for the specific message, and the super- // visor should create the process with the wanted subject on both // the publishing and the receiving node. If there is no such node // an error should be generated and processed by the error-kernel. go func() { for v := range s.newMessagesCh { for _, vv := range v { m := vv.Message subjName := vv.Subject.name() fmt.Printf("** handleNewOperatorMessages: message: %v, ** subject: %#v\n", m, vv.Subject) _, ok := s.processes[subjName] if ok { log.Printf("info: found the specific subject: %v\n", subjName) // Put the message on the correct process's messageCh s.processes[subjName].subject.messageCh <- m } else { log.Printf("info: did not find that specific subject: %v\n", subjName) time.Sleep(time.Millisecond * 500) continue } } } }() } type node string // subject contains the representation of a subject to be used with one // specific process type Subject struct { // node, the name of the node Node string `json:"node" yaml:"node"` // messageType, command/event MessageKind MessageKind `json:"messageKind" yaml:"messageKind"` // method, what is this message doing, etc. shellcommand, syslog, etc. Method string `json:"method" yaml:"method"` // messageCh is the channel for receiving new content to be sent messageCh chan Message } // newSubject will return a new variable of the type subject, and insert // all the values given as arguments. It will also create the channel // to receive new messages on the specific subject. func newSubject(node string, messageKind MessageKind, method string) Subject { return Subject{ Node: node, MessageKind: messageKind, Method: method, messageCh: make(chan Message), } } // subjectName is the complete representation of a subject type subjectName string func (s Subject) name() subjectName { return subjectName(fmt.Sprintf("%s.%s.%s", s.Node, s.MessageKind, s.Method)) } type processKind string const ( kindSubscriber processKind = "subscriber" kindPublisher processKind = "publisher" ) // process are represent the communication to one individual host type process struct { messageID int // the subject used for the specific process. One process // can contain only one sender on a message bus, hence // also one subject subject Subject // Put a node here to be able know the node a process is at. // NB: Might not be needed later on. node node // The processID for the current process processID int // errorCh is used to report errors from a process // NB: Implementing this as an int to report for testing errorCh chan errProcess } // prepareNewProcess will set the the provided values and the default // values for a process. func (s *server) processPrepareNew(subject Subject, errCh chan errProcess) process { // create the initial configuration for a sessions communicating with 1 host process. s.lastProcessID++ proc := process{ messageID: 0, subject: subject, node: node(subject.Node), processID: s.lastProcessID, errorCh: errCh, //messageCh: make(chan Message), } return proc } // spawnProcess will spawn a new process. It will give the process // the next available ID, and also add the process to the processes // map. func (s *server) processSpawnWorker(proc process) { s.mu.Lock() // We use the full name of the subject to identify a unique // process. We can do that since a process can only handle // one message queue. s.processes[proc.subject.name()] = proc s.mu.Unlock() // TODO: I think it makes most sense that the messages would come to // here from some other message-pickup-process, and that process will // give the message to the correct publisher process. A channel that // is listened on in the for loop below could be used to receive the // messages from the message-pickup-process. for { // Wait and read the next message on the message channel m := <-proc.subject.messageCh m.ID = s.processes[proc.subject.name()].messageID messageDeliver(proc, m, s.natsConn) // Increment the counter for the next message to be sent. proc.messageID++ s.processes[proc.subject.name()] = proc time.Sleep(time.Second * 1) // NB: simulate that we get an error, and that we can send that // out of the process and receive it in another thread. ep := errProcess{ infoText: "process failed", process: proc, message: m, errorActionCh: make(chan errorAction), } s.errorCh <- ep // Wait for the response action back from the error kernel, and // decide what to do. Should we continue, quit, or .... ? switch <-ep.errorActionCh { case errActionContinue: log.Printf("The errAction was continue...so we're continuing\n") } } } func messageDeliver(proc process, message Message, natsConn *nats.Conn) { for { dataPayload, err := gobEncodePayload(message) if err != nil { log.Printf("error: createDataPayload: %v\n", err) } msg := &nats.Msg{ Subject: string(proc.subject.name()), // Subject: fmt.Sprintf("%s.%s.%s", proc.node, "command", "shellcommand"), // Structure of the reply message are: // reply... Reply: fmt.Sprintf("reply.%s", proc.subject.name()), Data: dataPayload, } // The SubscribeSync used in the subscriber, will get messages that // are sent after it started subscribing, so we start a publisher // that sends out a message every second. // // Create a subscriber for the reply message. subReply, err := natsConn.SubscribeSync(msg.Reply) if err != nil { log.Printf("error: nc.SubscribeSync failed: %v\n", err) continue } // Publish message err = natsConn.PublishMsg(msg) if err != nil { log.Printf("error: publish failed: %v\n", err) continue } // Wait up until 10 seconds for a reply, // continue and resend if to reply received. msgReply, err := subReply.NextMsg(time.Second * 10) if err != nil { log.Printf("error: subRepl.NextMsg failed for node=%v, subject=%v: %v\n", proc.node, proc.subject.name(), err) // did not receive a reply, continuing from top again continue } log.Printf("publisher: received ACK: %s\n", msgReply.Data) return } } // gobEncodePayload will encode the message structure along with its // valued in gob binary format. // TODO: Check if it adds value to compress with gzip. func gobEncodePayload(m Message) ([]byte, error) { var buf bytes.Buffer gobEnc := gob.NewEncoder(&buf) err := gobEnc.Encode(m) if err != nil { return nil, fmt.Errorf("error: gob.Enode failed: %v", err) } return buf.Bytes(), nil }